Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2021-02, Vol.39 (2), p.165-168 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.
Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-020-0660-7 |