Context-aware dimensionality reduction deconvolutes gut microbial community dynamics

The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2021-02, Vol.39 (2), p.165-168
Hauptverfasser: Martino, Cameron, Shenhav, Liat, Marotz, Clarisse A., Armstrong, George, McDonald, Daniel, Vázquez-Baeza, Yoshiki, Morton, James T., Jiang, Lingjing, Dominguez-Bello, Maria Gloria, Swafford, Austin D., Halperin, Eran, Knight, Rob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets. Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-020-0660-7