3D Phase Field Modeling of Multi-Dendrites Evolution in Solidification and Validation by Synchrotron X-ray Tomography

In this paper, the dynamics of multi-dendrite concurrent growth and coarsening of an Al-15 .% Cu alloy was studied using a highly computationally efficient 3D phase field model and real-time synchrotron X-ray micro-tomography. High fidelity multi-dendrite simulations were achieved and the results we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-01, Vol.14 (3), p.520
Hauptverfasser: Wang, Shuo, Guo, Zhipeng, Kang, Jinwu, Zou, Meishuai, Li, Xiaodong, Zhang, Ang, Du, Wenjia, Zhang, Wei, Lee, Tung Lik, Xiong, Shoumei, Mi, Jiawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the dynamics of multi-dendrite concurrent growth and coarsening of an Al-15 .% Cu alloy was studied using a highly computationally efficient 3D phase field model and real-time synchrotron X-ray micro-tomography. High fidelity multi-dendrite simulations were achieved and the results were compared directly with the time-evolved tomography datasets to quantify the relative importance of multi-dendritic growth and coarsening. Coarsening mechanisms under different solidification conditions were further elucidated. The dominant coarsening mechanisms change from small arm melting and interdendritic groove advancement to coalescence when the solid volume fraction approaches ~0.70. Both tomography experiments and phase field simulations indicated that multi-dendrite coarsening obeys the classical Lifshitz-Slyozov-Wagner theory Rn-R0n = kc(t-t0), but with a higher constant of = 4.3.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14030520