A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroimmune pharmacology 2021-06, Vol.16 (2), p.270-288
Hauptverfasser: Machhi, Jatin, Shahjin, Farah, Das, Srijanee, Patel, Milankumar, Abdelmoaty, Mai Mohamed, Cohen, Jacob D, Singh, Preet Amol, Baldi, Ashish, Bajwa, Neha, Kumar, Raj, Vora, Lalit K, Patel, Tapan A, Oleynikov, Maxim D, Soni, Dhruvkumar, Yeapuri, Pravin, Mukadam, Insiya, Chakraborty, Rajashree, Saksena, Caroline G, Herskovitz, Jonathan, Hasan, Mahmudul, Oupicky, David, Das, Suvarthi, Donnelly, Ryan F, Hettie, Kenneth S, Chang, Linda, Gendelman, Howard E, Kevadiya, Bhavesh D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
ISSN:1557-1890
1557-1904
1557-1904
DOI:10.1007/s11481-020-09981-0