Repurposing of Tetracyclines for COVID-19 Neurological and Neuropsychiatric Manifestations: A Valid Option to Control SARS-CoV-2-Associated Neuroinflammation?
The recent outbreak of coronavirus disease 2019 (COVID-19) has gained considerable attention worldwide due to its increased potential to spread and infect the general population. COVID-19 primarily targets the human respiratory epithelium but also has neuro-invasive potential. Indeed, neuropsychiatr...
Gespeichert in:
Veröffentlicht in: | Journal of neuroimmune pharmacology 2021-06, Vol.16 (2), p.213-218 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recent outbreak of coronavirus disease 2019 (COVID-19) has gained considerable attention worldwide due to its increased potential to spread and infect the general population. COVID-19 primarily targets the human respiratory epithelium but also has neuro-invasive potential. Indeed, neuropsychiatric manifestations, such as fatigue, febrile seizures, psychiatric symptoms, and delirium, are consistently observed in COVID-19. The neurobiological basis of neuropsychiatric COVID-19 symptoms is not fully understood. However, previous evidence about systemic viral infections pointed to an ongoing neuroinflammatory response to viral antigens and proinflammatory mediators/immune cells from the periphery. Microglia cells mediate the overproduction of inflammatory cytokines, free radicals, and damage signals, culminating with neurotoxic consequences. Semi-synthetic second-generation tetracyclines, including minocycline (MINO) and doxycycline (DOXY), are safe bacteriostatic agents that have remarkable neuroprotective and anti-inflammatory properties. Promising results have been obtained in clinical trials using tetracyclines for major psychiatric disorders, such as schizophrenia and major depression. Tetracyclines can inhibit microglial reactivity and neuroinflammation by inhibiting nuclear factor kappa B (NF-kB) signaling, cyclooxygenase 2, and matrix metalloproteinases (MMPs). This drug class also has a broad profile of activity against bacteria associated with community-based pneumonia, including atypical agents. COVID-19 patients are susceptible to secondary bacterial infections, especially those on invasive ventilation. Therefore, we suggest tetracyclines’ repurposing as a potential treatment for COVID-19 neuropsychiatric manifestations. These drugs can represent a valuable multi-modal treatment for COVID-19-associated neuroinflammatory alterations based on their broad antimicrobial profile and neuroinflammation control. |
---|---|
ISSN: | 1557-1890 1557-1904 |
DOI: | 10.1007/s11481-021-09986-3 |