Pooled testing for COVID-19 diagnosis by real-time RT-PCR: A multi-site comparative evaluation of 5- & 10-sample pooling
Background & objectives: Public health and diagnostic laboratories are facing huge sample loads for COVID-19 diagnosis by real-time reverse transcription-polymerase chain reaction (RT-PCR). High sensitivity of optimized real-time RT-PCR assays makes pooled testing a potentially efficient strateg...
Gespeichert in:
Veröffentlicht in: | Indian journal of medical research (New Delhi, India : 1994) India : 1994), 2020-07, Vol.152 (1), p.88-94 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background & objectives: Public health and diagnostic laboratories are facing huge sample loads for COVID-19 diagnosis by real-time reverse transcription-polymerase chain reaction (RT-PCR). High sensitivity of optimized real-time RT-PCR assays makes pooled testing a potentially efficient strategy for resource utilization when positivity rates for particular regions or groups of individuals are low. We report here a comparative analysis of pooled testing for 5- and 10-sample pools by real-time RT-PCR across 10 COVID-19 testing laboratories in India.
Methods: Ten virus research and diagnostic laboratories (VRDLs) testing for COVID-19 by real-time RT-PCR participated in this evaluation. At each laboratory, 100 nasopharyngeal swab samples including 10 positive samples were used to create 5- and 10-sample pools with one positive sample in each pool. RNA extraction and real-time RT-PCR for SARS-CoV-2-specific E gene target were performed for individual positive samples as well as pooled samples. Concordance between individual sample testing and testing in the 5- or 10-sample pools was calculated, and the variation across sites and by sample cycle threshold (Ct) values was analyzed.
Results: A total of 110 each of 5- and 10-sample pools were evaluated. Concordance between the 5-sample pool and individual sample testing was 100 per cent in the Ct value ≤30 cycles and 95.5 per cent for Ctvalues ≤33 cycles. Overall concordance between the 5-sample pooled and individual sample testing was 88 per cent while that between 10-sample pool and individual sample testing was 66 per cent. Although the concordance rates for both the 5- and 10-sample pooled testing varied across laboratories, yet for samples with Ct values ≤33 cycles, the concordance was ≥90 per cent across all laboratories for the 5-sample pools.
Interpretation & conclusions: Results from this multi-site assessment suggest that pooling five samples for SARS-CoV-2 detection by real-time RT-PCR may be an acceptable strategy without much loss of sensitivity even for low viral loads, while with 10-sample pools, there may be considerably higher numbers of false negatives. However, testing laboratories should perform validations with the specific RNA extraction and RT-PCR kits in use at their centres before initiating pooled testing. |
---|---|
ISSN: | 0971-5916 0975-9174 |
DOI: | 10.4103/ijmr.IJMR_2304_20 |