Tumor Microenvironment Immune Response in Pancreatic Ductal Adenocarcinoma Patients Treated With Neoadjuvant Therapy

Abstract Background Neoadjuvant folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and chemoradiation have been used to downstage borderline and locally advanced pancreatic ductal adenocarcinoma (PDAC). Whether neoadjuvant therapy-induced tumor immune response contributes to the im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 2021-02, Vol.113 (2), p.182-191
Hauptverfasser: Michelakos, Theodoros, Cai, Lei, Villani, Vincenzo, Sabbatino, Francesco, Kontos, Filippos, Fernández-del Castillo, Carlos, Yamada, Teppei, Neyaz, Azfar, Taylor, Martin S, Deshpande, Vikram, Kurokawa, Tomohiro, Ting, David T, Qadan, Motaz, Weekes, Colin D, Allen, Jill N, Clark, Jeffrey W, Hong, Theodore S, Ryan, David P, Wo, Jennifer Y, Warshaw, Andrew L, Lillemoe, Keith D, Ferrone, Soldano, Ferrone, Cristina R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Neoadjuvant folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and chemoradiation have been used to downstage borderline and locally advanced pancreatic ductal adenocarcinoma (PDAC). Whether neoadjuvant therapy-induced tumor immune response contributes to the improved survival is unknown. Therefore, we evaluated whether neoadjuvant therapy induces an immune response towards PDAC. Methods Clinicopathological variables were collected for surgically resected PDACs at the Massachusetts General Hospital (1998-2016). Neoadjuvant regimens included FOLFIRINOX with or without chemoradiation, proton chemoradiation (25 Gy), photon chemoradiation (50.4 Gy), or no neoadjuvant therapy. Human leukocyte antigen (HLA) class I and II expression and immune cell infiltration (CD4+, FoxP3+, CD8+, granzyme B+ cells, and M2 macrophages) were analyzed immunohistochemically and correlated with clinicopathologic variables. The antitumor immune response was compared among neoadjuvant therapy regimens. All statistical tests were 2-sided. Results Two hundred forty-eight PDAC patients were included. The median age was 64 years and 50.0% were female. HLA-A defects were less frequent in the FOLFIRINOX cohort (P = .006). HLA class II expression was lowest in photon and highest in proton patients (P = .02). The FOLFIRINOX cohort exhibited the densest CD8+ cell infiltration (P < .001). FOLFIRINOX and proton patients had the highest CD4+ and lowest T regulatory (FoxP3+) cell density, respectively. M2 macrophage density was statistically significantly higher in the treatment-naïve group (P < .001) in which dense M2 macrophage infiltration was an independent predictor of poor overall survival. Conclusions Neoadjuvant FOLFIRINOX with or without chemoradiation may induce immunologically relevant changes in the tumor microenvironment. It may reduce HLA-A defects, increase CD8+ cell density, and decrease T regulatory cell and M2 macrophage density. Therefore, neoadjuvant FOLFIRINOX therapy may benefit from combinations with checkpoint inhibitors, which can enhance patients’ antitumor immune response.
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/djaa073