Diagnosis of COVID-19 using CT scan images and deep learning techniques

Early diagnosis of the coronavirus disease in 2019 (COVID-19) is essential for controlling this pandemic. COVID-19 has been spreading rapidly all over the world. There is no vaccine available for this virus yet. Fast and accurate COVID-19 screening is possible using computed tomography (CT) scan ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Emergency radiology 2021-06, Vol.28 (3), p.497-505
Hauptverfasser: Shah, Vruddhi, Keniya, Rinkal, Shridharani, Akanksha, Punjabi, Manav, Shah, Jainam, Mehendale, Ninad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early diagnosis of the coronavirus disease in 2019 (COVID-19) is essential for controlling this pandemic. COVID-19 has been spreading rapidly all over the world. There is no vaccine available for this virus yet. Fast and accurate COVID-19 screening is possible using computed tomography (CT) scan images. The deep learning techniques used in the proposed method is based on a convolutional neural network (CNN). Our manuscript focuses on differentiating the CT scan images of COVID-19 and non-COVID 19 CT using different deep learning techniques. A self-developed model named CTnet-10 was designed for the COVID-19 diagnosis, having an accuracy of 82.1%. Also, other models that we tested are DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. The VGG-19 proved to be superior with an accuracy of 94.52% as compared to all other deep learning models. Automated diagnosis of COVID-19 from the CT scan pictures can be used by the doctors as a quick and efficient method for COVID-19 screening.
ISSN:1070-3004
1438-1435
DOI:10.1007/s10140-020-01886-y