Extensive tissue-specific expression variation and novel regulators underlying circadian behavior
Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of ( ) and 141 Genetic Reference...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-01, Vol.7 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of
(
) and 141
Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators. Furthermore, >30% of DGRP lines exhibited aberrant circadian gene expression, revealing abundant genetic variation-mediated, intertissue circadian expression desynchrony. Genetic analysis of one line with the strongest deviating circadian expression uncovered a novel
mutation that, as shown by protein structural modeling and brain immunohistochemistry, disrupts the light-driven flavin adenine dinucleotide cofactor photoreduction, providing in vivo support for the importance of this conserved photoentrainment mechanism. Together, our study revealed pervasive tissue-specific circadian expression variation with genetic variants acting upon tissue-specific regulatory networks to generate local gene expression oscillations. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abc3781 |