Purposeful Misalignment of Severed Nerve Stumps in a Standardized Transection Model Reveals Persistent Functional Deficit With Aberrant Neurofilament Distribution
ABSTRACT Background Functional recovery following primary nerve repair of a transected nerve is often poor even with advanced microsurgical techniques. Recently, we developed a novel sciatic nerve transection method where end-to-end apposition of the nerve endings with minimal gap was performed with...
Gespeichert in:
Veröffentlicht in: | Military medicine 2021-01, Vol.186 (Supplement_1), p.696-703 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Background
Functional recovery following primary nerve repair of a transected nerve is often poor even with advanced microsurgical techniques. Recently, we developed a novel sciatic nerve transection method where end-to-end apposition of the nerve endings with minimal gap was performed with fibrin glue. We demonstrated that transected nerve repair with gluing results in optimal functional recovery with improved axonal neurofilament distribution profile compared to the end-to-end micro-suture repair. However, the impact of axonal misdirection and misalignment of nerve fascicles remains largely unknown in nerve-injury recovery. We addressed this issue using a novel nerve repair model with gluing.
Methods
In our complete “Flip and Transection with Glue” model, the nerve was “first” transected to 40% of its width from each side and distal stump was transversely flipped, then 20 µL of fibrin glue was applied around the transection site and the central 20% nerve was completely transected before fibrin glue clotting. Mice were followed for 28 days with weekly assessment of sciatic function. Immunohistochemistry analysis of both sciatic nerves was performed for neurofilament distribution and angiogenesis. Tibialis anterior muscles were analyzed for atrophy and histomorphometry.
Results
Functional recovery following misaligned repair remained persistently low throughout the postsurgical period. Immunohistochemistry of nerve sections revealed significantly increased aberrant axonal neurofilaments in injured and distal nerve segments compared to proximal segments. Increased aberrant neurofilament profiles in the injured and distal nerve segments were associated with significantly increased nerve blood-vessel density and branching index than in the proximal segment. Injured limbs had significant muscle atrophy, and muscle fiber distribution showed significantly increased numbers of smaller muscle fibers and decreased numbers of larger muscle fibers.
Conclusions
These findings in a novel nerve transection mouse model with misaligned repair suggest that aberrant neurofilament distributions and axonal misdirections play an important role in functional recovery and muscle atrophy. |
---|---|
ISSN: | 0026-4075 1930-613X |
DOI: | 10.1093/milmed/usaa344 |