Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration
Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a foc...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2021-02, Vol.58 (2), p.835-854 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL
+
and IBA1
+
positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1
+
cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration. |
---|---|
ISSN: | 0893-7648 1559-1182 1559-1182 |
DOI: | 10.1007/s12035-020-02158-z |