Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designe...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2021-02, Vol.29 (2), p.267-280.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen SARS-CoV-2 at two physiologically relevant temperatures along with three related coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-NL63, and HCoV-OC43), allowing us to probe this interactome at a much higher resolution than genome-scale studies. This approach yielded several insights, including potential virus-specific differences in Rab GTPase requirements and glycosylphosphatidylinositol (GPI) anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating coronavirus disease 2019 (COVID-19) and help prepare for future coronavirus outbreaks.
[Display omitted]
•SARS-CoV-2 host protein interactome CRISPR screens for SARS-CoV-2 and three coronaviruses•Parallel CRISPR screens uncover unique and shared coronavirus host factors•Numbers of interacting host proteins and functional interactors are not proportional•Identified SARS-CoV-2 host factors are expressed in relevant cells in the human airway
Building upon a published SARS-CoV-2 protein interactome, Hoffmann et al. use a custom CRISPR library to determine which of these interacting host proteins are essential for infection by SARS-CoV-2 virus as well as three seasonal coronaviruses. These factors represent potential targets to combat COVID-19 and perhaps future coronavirus outbreaks. |
---|---|
ISSN: | 1931-3128 1934-6069 |
DOI: | 10.1016/j.chom.2020.12.009 |