Transmission risk of infectious droplets in physical spreading process at different times: A review

Droplets provide a well-known transmission media in the COVID-19 epidemic, and the particle size is closely related to the classification of the transmission route. However, the term “aerosol” covers most particle sizes of suspended particulates because of information asymmetry in different discipli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2020-11, Vol.185, p.107307-107307, Article 107307
Hauptverfasser: Mao, N., An, C.K., Guo, L.Y., Wang, M., Guo, L., Guo, S.R., Long, E.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Droplets provide a well-known transmission media in the COVID-19 epidemic, and the particle size is closely related to the classification of the transmission route. However, the term “aerosol” covers most particle sizes of suspended particulates because of information asymmetry in different disciplines, which may lead to misunderstandings in the selection of epidemic prevention and control strategies for the public. In this review, the time when these droplets are exhaled by a patient was taken as the initial time. Then, all available viral loads and numerical distribution of the exhaled droplets was analyzed, and the evaporation model of droplets in the air was combined with the deposition model of droplet nuclei in the respiratory tract. Lastly, the perspective that physical spread affects the transmission risk of different size droplets at different times was summarized for the first time. The results showed that although the distribution of exhaled droplets was dominated by small droplets, droplet volume was proportional to the third power of particle diameter, meaning that the viral load of a 100 μm droplet was approximately 106 times that of a 1 μm droplet at the initial time. Furthermore, the exhaled droplets are affected by heat and mass transfer of evaporation, water fraction, salt concentration, and acid-base balance (the water fraction > 98%), which lead them to change rapidly, and the viral survival condition also deteriorates dramatically. The time required for the initial diameter (do) of a droplet to shrink to the equilibrium diameter (de, about 30% of do) is approximately proportional to the second power of the particle diameter, taking only a few milliseconds for a 1 μm droplet but hundreds of milliseconds for a 10 μm droplet; in other words, the viruses carried by the large droplets can be preserved as much as possible. Finally, the infectious droplet nuclei maybe inhaled by the susceptible population through different and random contact routes, and the droplet nuclei with larger de decompose more easily into tiny particles on account of the accelerated collision in a complex airway, which can be deposited in the higher risk alveolar region. During disease transmission, the infectious droplet particle size varies widely, and the transmission risk varies significantly at different time nodes; therefore, the fuzzy term “aerosol” is not conducive to analyzing disease exposure risk. Recommendations for epidemic prevention and control strategi
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2020.107307