Fate of Emerging Contaminants in High-Rate Activated Sludge Systems
High-rate activated sludge (HRAS) systems are designed to shift the energy-intensive processes to energy-saving and sustainable technologies for wastewater treatment. The high food-to-microorganism (F/M) ratios and low solid retention times (SRTs) and hydraulic retention times (HRTs) applied in HRAS...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2021-01, Vol.18 (2), p.400 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-rate activated sludge (HRAS) systems are designed to shift the energy-intensive processes to energy-saving and sustainable technologies for wastewater treatment. The high food-to-microorganism (F/M) ratios and low solid retention times (SRTs) and hydraulic retention times (HRTs) applied in HRAS systems result in the maximization of organic matter diversion to the sludge which can produce large amounts of biogas during anaerobic digestion, thus moving toward energy-neutral (or positive) treatment processes. However, in addition to the energy optimization, the removal of emerging contaminants (ECs) is the new challenge in wastewater treatment. In the context of this study, the removal efficiencies and the fates of selected ECs (three endocrine disruptors (endocrine disrupting chemicals (EDCs))-nonylphenol, bisphenol A and triclosan, and four pharmaceuticals (PhACs)-ibuprofen, naproxen, diclofenac and ketoprofen) in HRAS systems have been studied. According to the results, EDCs occurred in raw wastewater and secondary sludge at higher concentrations compared to PhACs. In HRAS operating schemes, all compounds were poorly ( |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph18020400 |