Blood pressure drives multispectral tuning of inspiration via a linked-loop neural network
The respiratory motor pattern is coordinated with cardiovascular system regulation. Inspiratory drive and respiratory phase durations are tuned by blood pressure and baroreceptor reflexes. We hypothesized that perturbations of systemic arterial blood pressure modulate inspiratory drive through a rap...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2020-12, Vol.124 (6), p.1676-1697 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The respiratory motor pattern is coordinated with cardiovascular system regulation. Inspiratory drive and respiratory phase durations are tuned by blood pressure and baroreceptor reflexes. We hypothesized that perturbations of systemic arterial blood pressure modulate inspiratory drive through a raphe-pontomedullary network. In 15 adult decerebrate vagotomized neuromuscular-blocked cats, we used multielectrode arrays to record the activities of 704 neurons within the medullary ventral respiratory column, pons, and raphe areas during baroreceptor-evoked perturbations of breathing, as measured by altered peak activity in integrated efferent phrenic nerve activity and changes in respiratory phase durations. Blood pressure was transiently (30 s) elevated or reduced by inflations of an embolectomy catheter in the descending aorta or inferior vena cava. S-transform time-frequency representations were calculated for multiunit phrenic nerve activity and some spike trains to identify changes in rhythmic activity during perturbations. Altered firing rates in response to either or both conditions were detected for 474 of 704 tested cells. Spike trains of 17,805 neuron pairs were evaluated for short-time scale correlational signatures indicative of functional connectivity with standard cross-correlation analysis, supplemented with gravitational clustering; ∼70% of tested (498 of 704) and responding neurons (333 of 474) were involved in a functional correlation with at least one other cell. Changes in high-frequency oscillations in the spiking of inspiratory neurons and the evocation or resetting of slow quasi-periodic fluctuations in the respiratory motor pattern associated with oscillations of arterial pressure were observed. The results support a linked-loop pontomedullary network architecture for multispectral tuning of inspiration.
The brain network that supports cardiorespiratory coupling remains poorly understood. Using multielectrode arrays, we tested the hypothesis that blood pressure and baroreceptor reflexes "tune" the breathing motor pattern via a raphe-pontomedullary network. Neuron responses to changes in arterial pressure and identified functional connectivity, together with altered high frequency and slow Lundberg B-wave oscillations, support a model with linked recurrent inhibitory loops that stabilize the respiratory network and provide a path for transmission of baroreceptor signals. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00442.2020 |