MiR155 modulates vascular calcification by regulating Akt‐FOXO3a signalling and apoptosis in vascular smooth muscle cells

microRNA‐155 (miR155) is pro‐atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real‐time PCR showed that miR155 is highly expressed in human ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2021-01, Vol.25 (1), p.535-548
Hauptverfasser: Li, Yong, Sun, Wei, Saaoud, Fatma, Wang, Yuzhen, Wang, Quanyi, Hodge, Johnie, Hui, Yvonne, Yin, Sophia, Lessner, Susan M., Kong, Xiangqing, Fan, Daping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:microRNA‐155 (miR155) is pro‐atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real‐time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes. Wound‐healing assay and TUNEL staining showed deletion of miR155 inhibited vascular smooth muscle cell (VSMC) migration and apoptosis. miR155 deficiency attenuated calcification of cultured mouse VSMCs and aortic rings induced by calcification medium, whereas miR155 overexpression promoted VSMC calcification. Compared with wild‐type mice, miR155−/− mice showed significant resistance to vitamin D3 induced vascular calcification. Protein analysis showed that miR155 deficiency alleviated the reduction of Rictor, increased phosphorylation of Akt at S473 and accelerated phosphorylation and degradation of FOXO3a in cultured VSMCs and in the aortas of vitamin D3‐treated mice. A PI3K inhibitor that suppresses Akt phosphorylation increased, whereas a pan‐caspase inhibitor that suppresses apoptosis reduced VSMC calcification; and both inhibitors diminished the protective effects of miR155 deficiency on VSMC calcification. In conclusion, miR155 deficiency attenuates vascular calcification by increasing Akt phosphorylation and FOXO3a degradation, and thus reducing VSMC apoptosis induced by calcification medium.
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.16107