Neurotransmitter-responsive nanosensors for T2-weighted magnetic resonance imaging

Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for T 1 -weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-10, Vol.141 (40), p.15751-15754
Hauptverfasser: Hsieh, Vivian, Okada, Satoshi, Wei, He, García-Álvarez, Isabel, Barandov, Ali, Alvarado, Santiago Recuenco, Ohlendorf, Robert, Fan, Jingxuan, Ortega, Athena, Jasanoff, Alan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for T 1 -weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry. Here we present an alternative molecular architecture for detecting neurotransmitters, using superparamagnetic iron oxide nanoparticles conjugated to tethered neurotransmitter analogs and engineered neurotransmitter binding proteins. Interactions between the nanoparticle conjugates result in clustering that is reversibly disrupted in the presence of neurotransmitter analytes, thus altering T 2 -weighted MRI signals. We demonstrate this principle using tethered dopamine and serotonin analogs, together with proteins selected for their ability to competitively bind either the analogs or the neurotransmitters themselves. Corresponding sensors for dopamine and serotonin exhibit target-selective relaxivity changes of up to 20%, while also operating below endogenous neurotransmitter concentrations. Semisynthetic magnetic particle sensors thus represent a promising path for minimally perturbative studies of neurochemical analytes.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b08744