Optimal Plane Selection for Measuring Post-prandial Blood Flow Increase within the Superior Mesenteric Artery: Analysis Using 4D Flow and Computational Fluid Dynamics

Purpose: 2D cine phase contrast (PC)-MRI is a standard velocimetry for the superior mesenteric artery (SMA); however, the optimal localization of the measurement plane has never been fully discussed previously. The purpose of this Institutional Review Board approved prospective and single arm study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic Resonance in Medical Sciences 2020, Vol.19(4), pp.366-374
Hauptverfasser: Sugiyama, Masataka, Takehara, Yasuo, Kawate, Masanori, Ooishi, Naoki, Terada, Masaki, Isoda, Haruo, Sakahara, Harumi, Naganawa, Shinji, Johnson, Kevin M., Wieben, Oliver, Wakayama, Tetsuya, Nozaki, Atsushi, Kabasawa, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: 2D cine phase contrast (PC)-MRI is a standard velocimetry for the superior mesenteric artery (SMA); however, the optimal localization of the measurement plane has never been fully discussed previously. The purpose of this Institutional Review Board approved prospective and single arm study is to test whether flow velocimetry of the SMA with combined use of 2D cine PC-MRI and meal challenge is dependent on the localizations of the measurement planes and to seek optimal section for velocimetry.Methods: Seven healthy volunteers underwent cardiac phase resolved ECG gated 2D cine PC-MRI pre- and 30 min post-meal challenge at three measurement planes: proximal, curved mid section and distal straight section of the SMA at 3T. 4D Flow using 3D cine PC-MRI with vastly undersampled isotropic projection imaging (PC VIPR) was also performed right after 2D cine PC-MRI to delineate the flow dynamics within the SMA using streamline analysis. Two radiologists measured flow velocities, and rated the appearances of the abnormal flow in the SMA on streamlines derived from the 4D Flow and the computational fluid dynamics (CFD).Results: 2D cine PC-MRI measured increased temporally averaged flow velocity (mm/s) after the meal challenge only in the proximal (129.3 vs. 97.8, P = 0.0313) and distal section (166.9 vs. 96.2, P = 0.0313), not in the curved mid section (113.1 vs. 85.5, P = 0.0625). The average velocities were highest and their standard errors (8.5–26.5) were smallest at the distal straight section both before and after the meal challenge as compared with other sections. The streamline analysis depicted more frequent appearances of vertical or helical flow in the curved mid section both on 4D Flow and CFD (κ: 0.27–0.68).Conclusion: SMA velocimetry with 2D cine PC-MRI was dependent on the localization of the measurement planes. Distal straight section, not in the curved mid section is recommended for MR velocimetry.
ISSN:1347-3182
1880-2206
DOI:10.2463/mrms.mp.2019-0089