Lexical Frequency Affects Functional Activation and Accuracy in Picture Naming Among Older and Younger Adults

As individuals age, they experience increased difficulties producing speech, especially with infrequent words. Older adults report that word retrieval difficulties frequently occur and are highly frustrating. However, little is known about how age affects the neural basis of language production. Mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychology and aging 2020-06, Vol.35 (4), p.536-552
Hauptverfasser: Gertel, Victoria H., Karimi, Hossein, Dennis, Nancy A., Neely, Kristina A., Diaz, Michele T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As individuals age, they experience increased difficulties producing speech, especially with infrequent words. Older adults report that word retrieval difficulties frequently occur and are highly frustrating. However, little is known about how age affects the neural basis of language production. Moreover, age-related increases in brain activation are often observed, yet there is disagreement about whether such increases represent a form of neural compensation or dedifferentiation. We used functional magnetic resonance imaging (fMRI) to determine if there are age-related differences in functional activation during picture naming and whether such differences are consistent with a compensatory, dedifferentiation, or hybrid account that factors in difficulty. Healthy younger and older adults performed a picture-naming task with stimuli that varied in lexical frequency-our proxy for difficulty. Both younger and older adults were sensitive to lexical frequency behaviorally and neurally. However, younger adults performed more accurately overall and engaged both language (bilateral insula and temporal pole) and cognitive control (bilateral superior frontal gyri and left cingulate) regions to a greater extent than older adults when processing lower frequency items. In both groups, poorer performance was associated with increases in functional activation consistent with dedifferentiation. Moreover, there were age-related differences in the strength of these correlations, with better performing younger adults modulating the bilateral insula and temporal pole and better performing older adults modulating bilateral frontal pole and precuneus. Overall, these findings highlight the influence of task difficulty on fMRI activation in older adults and suggest that as task difficulty increases, older and younger adults rely on different neural resources.
ISSN:0882-7974
1939-1498
DOI:10.1037/pag0000454