MicroRNA-149 is downregulated in Alzheimer’s disease and inhibits β-amyloid accumulation and ameliorates neuronal viability through targeting BACE1
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a critical role in Alzheimer’s disease (AD) pathogenesis. This study aimed to investigate the relationship between microRNA-149 (miR-149) and BACE1, and evaluate the clinical significance and biological function of miR-149 in AD pro...
Gespeichert in:
Veröffentlicht in: | Genetics and molecular biology 2021-01, Vol.44 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a critical
role in Alzheimer’s disease (AD) pathogenesis. This study aimed to investigate
the relationship between microRNA-149 (miR-149) and BACE1, and evaluate the
clinical significance and biological function of miR-149 in AD progression.
Bioinformatics analysis and a luciferase reporter assay were used to confirm the
interaction between miR-149 and BACE1. Expression of miR-149 and BACE1 was
estimated using quantitative real-time PCR. The clinical significance of miR-149
in AD diagnosis and severity determination was evaluated using ROC analysis. The
effect of miR-149 on Aβ accumulation and neuronal viability was analyzed in
Aβ-treated SH-SY5Y cells. miR-149 was found directly binding the 3’-UTR of BACE1
and was negatively correlated with BACE1 in AD patients and cell model. Serum
miR-149 expression was downregulated in AD patients and served as a potential
diagnostic biomarker. The overexpression of miR-149 in Aβ-treated SH-SY5Y cells
resulted in inhibited Aβ accumulation and enhanced neuronal viability. This
study demonstrated that serum miR-149 is decreased in AD patients and serves as
a candidate diagnostic biomarker, and that the overexpression of miR-149 may
suppress Aβ accumulation and promote neuronal viability by targeting BACE1 in AD
model cells. |
---|---|
ISSN: | 1415-4757 1678-4685 |
DOI: | 10.1590/1415-4757-GMB-2020-0064 |