Muscle blood flow is independent of conduit artery diameter following prior vasodilation in males

At the onset of exercise in humans, muscle blood flow (MBF) increases to a new steady‐state that closely matches the metabolic demand of exercise. This increase has been attributed to “contraction‐induced vasodilation,” comprised of the skeletal muscle pump and rapid vasodilatory mechanisms. While m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological Reports 2021-01, Vol.9 (1), p.e14698-n/a
Hauptverfasser: Rotarius, Timothy R., Lauver, Jakob D., Thistlethwaite, John R., Scheuermann, Barry W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At the onset of exercise in humans, muscle blood flow (MBF) increases to a new steady‐state that closely matches the metabolic demand of exercise. This increase has been attributed to “contraction‐induced vasodilation,” comprised of the skeletal muscle pump and rapid vasodilatory mechanisms. While most research in this area has focused on forearm blood flow (FBF) and vascular conductance, it is possible that separating FBF into diameter and blood velocity can provide more useful information on MBF regulation downstream of the conduit artery. Therefore, we attempted to dissociate the matching of oxygen delivery and oxygen demand by administering glyceryl tri‐nitrate (GTN) prior to handgrip exercise. Eight healthy males (29 ± 9 years) performed two trials consisting of two bouts of rhythmic handgrip exercise (30 contractions·min−1 at 5% of maximum) for 6 min, one for each control and GTN (0.4 mg sublingual) condition. Administration of GTN resulted in a 12% increase in resting brachial artery diameter that persisted throughout the duration of exercise (CON: 0.50 ± 0.01 cm; GTN: 0.56 ± 0.01 cm, p 
ISSN:2051-817X
DOI:10.14814/phy2.14698