Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation

Cardiovascular complications have been well documented as the downside to conventional cancer chemotherapy. As a notable side effect of cisplatin, cardiotoxicity represents a major obstacle to the successful treatment of cancer. It has been reported that kaempferol (KPF) possesses cardioprotective a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of translational research 2020-01, Vol.12 (12), p.8007-8018
Hauptverfasser: Qi, Yajun, Ying, Yin, Zou, Jie, Fang, Qilu, Yuan, Xiaohong, Cao, Yingying, Cai, Yunfang, Fu, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular complications have been well documented as the downside to conventional cancer chemotherapy. As a notable side effect of cisplatin, cardiotoxicity represents a major obstacle to the successful treatment of cancer. It has been reported that kaempferol (KPF) possesses cardioprotective and anti-inflammatory qualities. However, the effect of KPF on cardiac damage caused by conventional cancer chemotherapy remains unclear. In this study, we clarified the protective effect of KPF on cisplatin-induced heart injury, and conducted in-depth research on the molecular mechanism underlying this effect. The results showed that KPF protected against cardiac dysfunction and injury induced by cisplatin . In H9c2 cells, KPF dramatically reduced cispaltin-induced apoptosis and inflammatory response by modulating STING/NF-κB pathway. In conclusion, these results showed that KPF had great potential in attenuating cisplatin-induced cardiac injury. Besides, greater emphasis should be placed in the future on natural active compounds containing KPF with anti-inflammatory effects for the treatment of these diseases.
ISSN:1943-8141
1943-8141