A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities

Lakes play a pivotal role in ecological and biogeochemical processes and have been described as “sentinels” of environmental change. Assessing “lake health” across large geographic scales is critical to predict the stability of their ecosystem services and their vulnerability to anthropogenic distur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2020-12, Vol.14 (12), p.3011-3023
Hauptverfasser: Kraemer, S. A., Barbosa da Costa, N., Shapiro, B. J., Fradette, M., Huot, Y., Walsh, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lakes play a pivotal role in ecological and biogeochemical processes and have been described as “sentinels” of environmental change. Assessing “lake health” across large geographic scales is critical to predict the stability of their ecosystem services and their vulnerability to anthropogenic disturbances. The LakePulse research network is tasked with the assessment of lake health across gradients of land use on a continental scale. Bacterial communities are an integral and rapidly responding component of lake ecosystems, yet large-scale responses to anthropogenic activity remain elusive. Here, we assess the ecological impact of land use on bacterial communities from over 200 lakes covering more than 660,000 km 2 across Eastern Canada. In addition to community variation between ecozones, land use across Eastern Canada also appeared to alter diversity, community composition, and network structure. Specifically, increasing anthropogenic impact within the watershed lowered diversity. Likewise, community composition was significantly correlated with agriculture and urban development within a watershed. Interaction networks showed decreasing complexity and fewer keystone taxa in impacted lakes. Moreover, we identified potential indicator taxa of high or low lake water quality. Together, these findings point to detectable bacterial community changes of largely unknown consequences induced by human activity within lake watersheds.
ISSN:1751-7362
1751-7370
DOI:10.1038/s41396-020-0733-0