Triplex‐Forming Peptide Nucleic Acids with Extended Backbones
Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRN...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2020-12, Vol.21 (23), p.3410-3416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3416 |
---|---|
container_issue | 23 |
container_start_page | 3410 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 21 |
creator | Kumar, Vipin Brodyagin, Nikita Rozners, Eriks |
description | Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.
PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA. |
doi_str_mv | 10.1002/cbic.202000432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7783598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465678597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</originalsourceid><addsrcrecordid>eNqFkc9OGzEQxq2KigDl2iNaiQuXpP7v3UsriEKLhNoe6Nny2rOJ081usHeB3HgEnpEnwSghQC89eeT5zadv5kPoM8EjgjH9YktvRxRTjDFn9APaI5wVQyUZ29nUnFI1QPsxzhNTSEZ20YBRWahcqD307Sr4ZQ13j_cP521Y-Gaa_YZl5x1kP3tbg7fZqfUuZre-m2WTuw4aBy47M_Zv2TYQP6GPlakjHG7eA_TnfHI1_jG8_PX9Ynx6ObQCCzoUnBsiK2UL55ywZSmhYg4sZ9IBZ6AIVqRkjBpc5bnhpMotEypPHtOABXaAvq51l325gPTTdMHUehn8woSVbo3X7zuNn-lpe6OVypko8iRwshEI7XUPsdMLHy3UtWmg7aOmnErBkk-R0ON_0HnbhyatlygpZLpcoRI1WlM2tDEGqLZmCNbP2ejnbPQ2mzRw9HaFLf4SRgKKNXDra1j9R06Pzy7Gr-JPjfmcTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465678597</pqid></control><display><type>article</type><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</creator><creatorcontrib>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</creatorcontrib><description>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.
PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202000432</identifier><identifier>PMID: 32697857</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acids ; Amides ; Backbone ; Binding ; Calorimetry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Double-stranded RNA ; Hydrogen ; Hydrogen bonding ; isothermal titration calorimetry ; modified backbones ; Nucleic Acid Conformation ; Nucleic acids ; Peptide nucleic acids ; Peptide Nucleic Acids - chemical synthesis ; Peptide Nucleic Acids - chemistry ; Peptides ; Ribonucleic acid ; RNA ; RNA - chemistry ; Titration ; Titration calorimetry ; triple helixes</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (23), p.3410-3416</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</citedby><cites>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</cites><orcidid>0000-0001-7649-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202000432$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202000432$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32697857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Brodyagin, Nikita</creatorcontrib><creatorcontrib>Rozners, Eriks</creatorcontrib><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.
PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</description><subject>Acids</subject><subject>Amides</subject><subject>Backbone</subject><subject>Binding</subject><subject>Calorimetry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Double-stranded RNA</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>isothermal titration calorimetry</subject><subject>modified backbones</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - chemical synthesis</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Peptides</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>triple helixes</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9OGzEQxq2KigDl2iNaiQuXpP7v3UsriEKLhNoe6Nny2rOJ081usHeB3HgEnpEnwSghQC89eeT5zadv5kPoM8EjgjH9YktvRxRTjDFn9APaI5wVQyUZ29nUnFI1QPsxzhNTSEZ20YBRWahcqD307Sr4ZQ13j_cP521Y-Gaa_YZl5x1kP3tbg7fZqfUuZre-m2WTuw4aBy47M_Zv2TYQP6GPlakjHG7eA_TnfHI1_jG8_PX9Ynx6ObQCCzoUnBsiK2UL55ywZSmhYg4sZ9IBZ6AIVqRkjBpc5bnhpMotEypPHtOABXaAvq51l325gPTTdMHUehn8woSVbo3X7zuNn-lpe6OVypko8iRwshEI7XUPsdMLHy3UtWmg7aOmnErBkk-R0ON_0HnbhyatlygpZLpcoRI1WlM2tDEGqLZmCNbP2ejnbPQ2mzRw9HaFLf4SRgKKNXDra1j9R06Pzy7Gr-JPjfmcTA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kumar, Vipin</creator><creator>Brodyagin, Nikita</creator><creator>Rozners, Eriks</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7649-0040</orcidid></search><sort><creationdate>20201201</creationdate><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><author>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Amides</topic><topic>Backbone</topic><topic>Binding</topic><topic>Calorimetry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Double-stranded RNA</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>isothermal titration calorimetry</topic><topic>modified backbones</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - chemical synthesis</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Peptides</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>triple helixes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Brodyagin, Nikita</creatorcontrib><creatorcontrib>Rozners, Eriks</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vipin</au><au>Brodyagin, Nikita</au><au>Rozners, Eriks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>21</volume><issue>23</issue><spage>3410</spage><epage>3416</epage><pages>3410-3416</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.
PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32697857</pmid><doi>10.1002/cbic.202000432</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7649-0040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (23), p.3410-3416 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7783598 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Acids Amides Backbone Binding Calorimetry Deoxyribonucleic acid DNA DNA - chemistry Double-stranded RNA Hydrogen Hydrogen bonding isothermal titration calorimetry modified backbones Nucleic Acid Conformation Nucleic acids Peptide nucleic acids Peptide Nucleic Acids - chemical synthesis Peptide Nucleic Acids - chemistry Peptides Ribonucleic acid RNA RNA - chemistry Titration Titration calorimetry triple helixes |
title | Triplex‐Forming Peptide Nucleic Acids with Extended Backbones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triplex%E2%80%90Forming%20Peptide%20Nucleic%20Acids%20with%20Extended%20Backbones&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Kumar,%20Vipin&rft.date=2020-12-01&rft.volume=21&rft.issue=23&rft.spage=3410&rft.epage=3416&rft.pages=3410-3416&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202000432&rft_dat=%3Cproquest_pubme%3E2465678597%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465678597&rft_id=info:pmid/32697857&rfr_iscdi=true |