Triplex‐Forming Peptide Nucleic Acids with Extended Backbones

Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2020-12, Vol.21 (23), p.3410-3416
Hauptverfasser: Kumar, Vipin, Brodyagin, Nikita, Rozners, Eriks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3416
container_issue 23
container_start_page 3410
container_title Chembiochem : a European journal of chemical biology
container_volume 21
creator Kumar, Vipin
Brodyagin, Nikita
Rozners, Eriks
description Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids. PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.
doi_str_mv 10.1002/cbic.202000432
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7783598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465678597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</originalsourceid><addsrcrecordid>eNqFkc9OGzEQxq2KigDl2iNaiQuXpP7v3UsriEKLhNoe6Nny2rOJ081usHeB3HgEnpEnwSghQC89eeT5zadv5kPoM8EjgjH9YktvRxRTjDFn9APaI5wVQyUZ29nUnFI1QPsxzhNTSEZ20YBRWahcqD307Sr4ZQ13j_cP521Y-Gaa_YZl5x1kP3tbg7fZqfUuZre-m2WTuw4aBy47M_Zv2TYQP6GPlakjHG7eA_TnfHI1_jG8_PX9Ynx6ObQCCzoUnBsiK2UL55ywZSmhYg4sZ9IBZ6AIVqRkjBpc5bnhpMotEypPHtOABXaAvq51l325gPTTdMHUehn8woSVbo3X7zuNn-lpe6OVypko8iRwshEI7XUPsdMLHy3UtWmg7aOmnErBkk-R0ON_0HnbhyatlygpZLpcoRI1WlM2tDEGqLZmCNbP2ejnbPQ2mzRw9HaFLf4SRgKKNXDra1j9R06Pzy7Gr-JPjfmcTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465678597</pqid></control><display><type>article</type><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</creator><creatorcontrib>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</creatorcontrib><description>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids. PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202000432</identifier><identifier>PMID: 32697857</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acids ; Amides ; Backbone ; Binding ; Calorimetry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Double-stranded RNA ; Hydrogen ; Hydrogen bonding ; isothermal titration calorimetry ; modified backbones ; Nucleic Acid Conformation ; Nucleic acids ; Peptide nucleic acids ; Peptide Nucleic Acids - chemical synthesis ; Peptide Nucleic Acids - chemistry ; Peptides ; Ribonucleic acid ; RNA ; RNA - chemistry ; Titration ; Titration calorimetry ; triple helixes</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (23), p.3410-3416</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</citedby><cites>FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</cites><orcidid>0000-0001-7649-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202000432$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202000432$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32697857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Brodyagin, Nikita</creatorcontrib><creatorcontrib>Rozners, Eriks</creatorcontrib><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids. PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</description><subject>Acids</subject><subject>Amides</subject><subject>Backbone</subject><subject>Binding</subject><subject>Calorimetry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Double-stranded RNA</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>isothermal titration calorimetry</subject><subject>modified backbones</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - chemical synthesis</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Peptides</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>triple helixes</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9OGzEQxq2KigDl2iNaiQuXpP7v3UsriEKLhNoe6Nny2rOJ081usHeB3HgEnpEnwSghQC89eeT5zadv5kPoM8EjgjH9YktvRxRTjDFn9APaI5wVQyUZ29nUnFI1QPsxzhNTSEZ20YBRWahcqD307Sr4ZQ13j_cP521Y-Gaa_YZl5x1kP3tbg7fZqfUuZre-m2WTuw4aBy47M_Zv2TYQP6GPlakjHG7eA_TnfHI1_jG8_PX9Ynx6ObQCCzoUnBsiK2UL55ywZSmhYg4sZ9IBZ6AIVqRkjBpc5bnhpMotEypPHtOABXaAvq51l325gPTTdMHUehn8woSVbo3X7zuNn-lpe6OVypko8iRwshEI7XUPsdMLHy3UtWmg7aOmnErBkk-R0ON_0HnbhyatlygpZLpcoRI1WlM2tDEGqLZmCNbP2ejnbPQ2mzRw9HaFLf4SRgKKNXDra1j9R06Pzy7Gr-JPjfmcTA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kumar, Vipin</creator><creator>Brodyagin, Nikita</creator><creator>Rozners, Eriks</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7649-0040</orcidid></search><sort><creationdate>20201201</creationdate><title>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</title><author>Kumar, Vipin ; Brodyagin, Nikita ; Rozners, Eriks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5052-544a16f7c9ddd5cbb6ef3dec436de43e71071b332a0f88a41f8c3578857dddce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Amides</topic><topic>Backbone</topic><topic>Binding</topic><topic>Calorimetry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Double-stranded RNA</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>isothermal titration calorimetry</topic><topic>modified backbones</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - chemical synthesis</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Peptides</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>triple helixes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Brodyagin, Nikita</creatorcontrib><creatorcontrib>Rozners, Eriks</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vipin</au><au>Brodyagin, Nikita</au><au>Rozners, Eriks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triplex‐Forming Peptide Nucleic Acids with Extended Backbones</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>21</volume><issue>23</issue><spage>3410</spage><epage>3416</epage><pages>3410-3416</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids. PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32697857</pmid><doi>10.1002/cbic.202000432</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7649-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (23), p.3410-3416
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7783598
source MEDLINE; Wiley Online Library All Journals
subjects Acids
Amides
Backbone
Binding
Calorimetry
Deoxyribonucleic acid
DNA
DNA - chemistry
Double-stranded RNA
Hydrogen
Hydrogen bonding
isothermal titration calorimetry
modified backbones
Nucleic Acid Conformation
Nucleic acids
Peptide nucleic acids
Peptide Nucleic Acids - chemical synthesis
Peptide Nucleic Acids - chemistry
Peptides
Ribonucleic acid
RNA
RNA - chemistry
Titration
Titration calorimetry
triple helixes
title Triplex‐Forming Peptide Nucleic Acids with Extended Backbones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triplex%E2%80%90Forming%20Peptide%20Nucleic%20Acids%20with%20Extended%20Backbones&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Kumar,%20Vipin&rft.date=2020-12-01&rft.volume=21&rft.issue=23&rft.spage=3410&rft.epage=3416&rft.pages=3410-3416&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202000432&rft_dat=%3Cproquest_pubme%3E2465678597%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465678597&rft_id=info:pmid/32697857&rfr_iscdi=true