Triplex‐Forming Peptide Nucleic Acids with Extended Backbones

Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2020-12, Vol.21 (23), p.3410-3416
Hauptverfasser: Kumar, Vipin, Brodyagin, Nikita, Rozners, Eriks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids. PNAs form higher‐stability triple helices with dsRNA than DNA. Structural considerations suggested that extending the PNA backbone by one carbon atom might reverse this preference in favor of DNA; however, experiments disproved this hypothesis. The studies suggested that PNA has an inherent preference for forming A‐form triple‐helical structures and, hence, has higher affinity for RNA than DNA.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.202000432