Preparation and Characterization of Nonwoven Fibrous Biocomposites for Footwear Components

Chromium-tanned leathers used in the manufacture of footwear and leather goods pose an environmental problem because they contain harmful chemicals and are very difficult to recycle. A solution to this problem can be composite materials from tree leaves, fruit residues and other fibrous agricultural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-12, Vol.12 (12), p.3016
Hauptverfasser: Asabuwa Ngwabebhoh, Fahanwi, Saha, Nabanita, Nguyen, Hau Trung, Brodnjak, Urška Vrabič, Saha, Tomas, Lengalova, Anežka, Saha, Petr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromium-tanned leathers used in the manufacture of footwear and leather goods pose an environmental problem because they contain harmful chemicals and are very difficult to recycle. A solution to this problem can be composite materials from tree leaves, fruit residues and other fibrous agricultural products, which can replace chromium-tanned leather. The present study describes the preparation of biocomposite leather-like materials from microbial cellulose and maple leave fibers as bio-fillers. The formulation was optimized by design of experiment and the prepared biocomposites characterized by tensile test, FTIR, DMA, SEM, adhesion test, volume porosity, water absorptivity, surface wettability and shape stability. From the viewpoint of future use in the footwear industry, results obtained showed that the optimized material was considerably flexible with tensile strength of 2.13 ± 0.29 MPa, elastic modulus of 76.93 ± 1.63 MPa and porosity of 1570 ± 146 mL/min. In addition, the material depicted good shape stability and surface adhesive properties. The results indicate that a suitable treatment of biomass offers a way to prepare exploitable nonwoven fibrous composites for the footwear industry without further burdening the environment.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12123016