Comprehensive Analysis of SWI/SNF Inactivation in Lung Adenocarcinoma Cell Models

Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-12, Vol.12 (12), p.3712
Hauptverfasser: Peinado, Paola, Andrades, Alvaro, Cuadros, Marta, Rodriguez, Maria Isabel, Coira, Isabel F, Garcia, Daniel J, Álvarez-Perez, Juan Carlos, Baliñas-Gavira, Carlos, Arenas, Alberto M, Patiño-Mercau, Juan Rodrigo, Sanjuan-Hidalgo, Juan, Romero, Octavio A, Montuenga, Luis M, Carretero, Julian, Sanchez-Cespedes, Montserrat, Medina, Pedro P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12123712