proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
Abstract Motivation Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computat...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-12, Vol.36 (20), p.5107-5108 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and cheaper alternatives to classical experimental methodologies used for the study of antibody–antigen complexes.
Results
Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive the docking in HADDOCK.
Availability and implementation
The proABC-2 server is freely available at: https://wenmr.science.uu.nl/proabc2/.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa644 |