DeepEventMine: end-to-end neural nested event extraction from biomedical texts

Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-12, Vol.36 (19), p.4910-4917
Hauptverfasser: Trieu, Hai-Long, Tran, Thy Thy, Duong, Khoa N A, Nguyen, Anh, Miwa, Makoto, Ananiadou, Sophia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4917
container_issue 19
container_start_page 4910
container_title Bioinformatics
container_volume 36
creator Trieu, Hai-Long
Tran, Thy Thy
Duong, Khoa N A
Nguyen, Anh
Miwa, Makoto
Ananiadou, Sophia
description Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance. Availability and implementation Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa540
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7750964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa540</oup_id><sourcerecordid>2457277851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</originalsourceid><addsrcrecordid>eNqNkU9PwyAYxonRuDn9CkuPXuqgQGk9mJg5_yRTL3omlIJi2lKBLvrtZdlc3M3TQ_L-3ocHHgCmCF4gWOJZZazptHWtCEb6WRWEoAQegDEiOUwzSMvDeMY5S0kB8QiceP8BIUWEkGMwwhgRhAgbg6cbpfrFSnXh0XTqMlFdnQabRkk6NTjRRPFB1YlaM4n6Ck7IYGyXaGfbJMZoVW1k5EKc-VNwpEXj1dlWJ-D1dvEyv0-Xz3cP8-tlKgnNQ5rpmpQ1orrMS00JqStUMVVkGGtaUVlCVGhWM6RKUusK54UstKhyihHGWZEVeAKuNr79UMUAMmaLWXnvTCvcN7fC8P1JZ975m11xxigscxINzrcGzn4O8Ym8NV6qphGdsoPnGaEsY6ygKKL5BpXOeu-U3l2DIF-XwffL4Nsy4uL0b8jd2u_vRwBtADv0_zX9AVoUnvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457277851</pqid></control><display><type>article</type><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</creator><creatorcontrib>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</creatorcontrib><description>Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance. Availability and implementation Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa540</identifier><identifier>PMID: 33141147</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Language ; Original Papers ; Research Design</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (19), p.4910-4917</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</citedby><cites>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750964/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750964/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33141147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trieu, Hai-Long</creatorcontrib><creatorcontrib>Tran, Thy Thy</creatorcontrib><creatorcontrib>Duong, Khoa N A</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Ananiadou, Sophia</creatorcontrib><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance. Availability and implementation Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Language</subject><subject>Original Papers</subject><subject>Research Design</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9PwyAYxonRuDn9CkuPXuqgQGk9mJg5_yRTL3omlIJi2lKBLvrtZdlc3M3TQ_L-3ocHHgCmCF4gWOJZZazptHWtCEb6WRWEoAQegDEiOUwzSMvDeMY5S0kB8QiceP8BIUWEkGMwwhgRhAgbg6cbpfrFSnXh0XTqMlFdnQabRkk6NTjRRPFB1YlaM4n6Ck7IYGyXaGfbJMZoVW1k5EKc-VNwpEXj1dlWJ-D1dvEyv0-Xz3cP8-tlKgnNQ5rpmpQ1orrMS00JqStUMVVkGGtaUVlCVGhWM6RKUusK54UstKhyihHGWZEVeAKuNr79UMUAMmaLWXnvTCvcN7fC8P1JZ975m11xxigscxINzrcGzn4O8Ym8NV6qphGdsoPnGaEsY6ygKKL5BpXOeu-U3l2DIF-XwffL4Nsy4uL0b8jd2u_vRwBtADv0_zX9AVoUnvI</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Trieu, Hai-Long</creator><creator>Tran, Thy Thy</creator><creator>Duong, Khoa N A</creator><creator>Nguyen, Anh</creator><creator>Miwa, Makoto</creator><creator>Ananiadou, Sophia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201208</creationdate><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><author>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Language</topic><topic>Original Papers</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trieu, Hai-Long</creatorcontrib><creatorcontrib>Tran, Thy Thy</creatorcontrib><creatorcontrib>Duong, Khoa N A</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Ananiadou, Sophia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trieu, Hai-Long</au><au>Tran, Thy Thy</au><au>Duong, Khoa N A</au><au>Nguyen, Anh</au><au>Miwa, Makoto</au><au>Ananiadou, Sophia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>36</volume><issue>19</issue><spage>4910</spage><epage>4917</epage><pages>4910-4917</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance. Availability and implementation Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33141147</pmid><doi>10.1093/bioinformatics/btaa540</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-12, Vol.36 (19), p.4910-4917
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7750964
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Language
Original Papers
Research Design
title DeepEventMine: end-to-end neural nested event extraction from biomedical texts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepEventMine:%20end-to-end%20neural%20nested%20event%20extraction%20from%20biomedical%20texts&rft.jtitle=Bioinformatics&rft.au=Trieu,%20Hai-Long&rft.date=2020-12-08&rft.volume=36&rft.issue=19&rft.spage=4910&rft.epage=4917&rft.pages=4910-4917&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa540&rft_dat=%3Cproquest_pubme%3E2457277851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457277851&rft_id=info:pmid/33141147&rft_oup_id=10.1093/bioinformatics/btaa540&rfr_iscdi=true