DeepEventMine: end-to-end neural nested event extraction from biomedical texts
Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-12, Vol.36 (19), p.4910-4917 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4917 |
---|---|
container_issue | 19 |
container_start_page | 4910 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Trieu, Hai-Long Tran, Thy Thy Duong, Khoa N A Nguyen, Anh Miwa, Makoto Ananiadou, Sophia |
description | Abstract
Motivation
Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools.
Results
We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance.
Availability and implementation
Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btaa540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7750964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa540</oup_id><sourcerecordid>2457277851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</originalsourceid><addsrcrecordid>eNqNkU9PwyAYxonRuDn9CkuPXuqgQGk9mJg5_yRTL3omlIJi2lKBLvrtZdlc3M3TQ_L-3ocHHgCmCF4gWOJZZazptHWtCEb6WRWEoAQegDEiOUwzSMvDeMY5S0kB8QiceP8BIUWEkGMwwhgRhAgbg6cbpfrFSnXh0XTqMlFdnQabRkk6NTjRRPFB1YlaM4n6Ck7IYGyXaGfbJMZoVW1k5EKc-VNwpEXj1dlWJ-D1dvEyv0-Xz3cP8-tlKgnNQ5rpmpQ1orrMS00JqStUMVVkGGtaUVlCVGhWM6RKUusK54UstKhyihHGWZEVeAKuNr79UMUAMmaLWXnvTCvcN7fC8P1JZ975m11xxigscxINzrcGzn4O8Ym8NV6qphGdsoPnGaEsY6ygKKL5BpXOeu-U3l2DIF-XwffL4Nsy4uL0b8jd2u_vRwBtADv0_zX9AVoUnvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457277851</pqid></control><display><type>article</type><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</creator><creatorcontrib>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</creatorcontrib><description>Abstract
Motivation
Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools.
Results
We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance.
Availability and implementation
Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa540</identifier><identifier>PMID: 33141147</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Language ; Original Papers ; Research Design</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (19), p.4910-4917</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</citedby><cites>FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750964/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750964/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33141147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trieu, Hai-Long</creatorcontrib><creatorcontrib>Tran, Thy Thy</creatorcontrib><creatorcontrib>Duong, Khoa N A</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Ananiadou, Sophia</creatorcontrib><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools.
Results
We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance.
Availability and implementation
Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Language</subject><subject>Original Papers</subject><subject>Research Design</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9PwyAYxonRuDn9CkuPXuqgQGk9mJg5_yRTL3omlIJi2lKBLvrtZdlc3M3TQ_L-3ocHHgCmCF4gWOJZZazptHWtCEb6WRWEoAQegDEiOUwzSMvDeMY5S0kB8QiceP8BIUWEkGMwwhgRhAgbg6cbpfrFSnXh0XTqMlFdnQabRkk6NTjRRPFB1YlaM4n6Ck7IYGyXaGfbJMZoVW1k5EKc-VNwpEXj1dlWJ-D1dvEyv0-Xz3cP8-tlKgnNQ5rpmpQ1orrMS00JqStUMVVkGGtaUVlCVGhWM6RKUusK54UstKhyihHGWZEVeAKuNr79UMUAMmaLWXnvTCvcN7fC8P1JZ975m11xxigscxINzrcGzn4O8Ym8NV6qphGdsoPnGaEsY6ygKKL5BpXOeu-U3l2DIF-XwffL4Nsy4uL0b8jd2u_vRwBtADv0_zX9AVoUnvI</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Trieu, Hai-Long</creator><creator>Tran, Thy Thy</creator><creator>Duong, Khoa N A</creator><creator>Nguyen, Anh</creator><creator>Miwa, Makoto</creator><creator>Ananiadou, Sophia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201208</creationdate><title>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</title><author>Trieu, Hai-Long ; Tran, Thy Thy ; Duong, Khoa N A ; Nguyen, Anh ; Miwa, Makoto ; Ananiadou, Sophia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2fd49d15f969f544db1b7e8233f5b5c9018f7d71e94dfb368c8fab65313328283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Language</topic><topic>Original Papers</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trieu, Hai-Long</creatorcontrib><creatorcontrib>Tran, Thy Thy</creatorcontrib><creatorcontrib>Duong, Khoa N A</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Ananiadou, Sophia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trieu, Hai-Long</au><au>Tran, Thy Thy</au><au>Duong, Khoa N A</au><au>Nguyen, Anh</au><au>Miwa, Makoto</au><au>Ananiadou, Sophia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepEventMine: end-to-end neural nested event extraction from biomedical texts</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>36</volume><issue>19</issue><spage>4910</spage><epage>4917</epage><pages>4910-4917</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools.
Results
We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance.
Availability and implementation
Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33141147</pmid><doi>10.1093/bioinformatics/btaa540</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-12, Vol.36 (19), p.4910-4917 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7750964 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Language Original Papers Research Design |
title | DeepEventMine: end-to-end neural nested event extraction from biomedical texts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepEventMine:%20end-to-end%20neural%20nested%20event%20extraction%20from%20biomedical%20texts&rft.jtitle=Bioinformatics&rft.au=Trieu,%20Hai-Long&rft.date=2020-12-08&rft.volume=36&rft.issue=19&rft.spage=4910&rft.epage=4917&rft.pages=4910-4917&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa540&rft_dat=%3Cproquest_pubme%3E2457277851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457277851&rft_id=info:pmid/33141147&rft_oup_id=10.1093/bioinformatics/btaa540&rfr_iscdi=true |