DeepEventMine: end-to-end neural nested event extraction from biomedical texts

Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-12, Vol.36 (19), p.4910-4917
Hauptverfasser: Trieu, Hai-Long, Tran, Thy Thy, Duong, Khoa N A, Nguyen, Anh, Miwa, Makoto, Ananiadou, Sophia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation Recent neural approaches on event extraction from text mainly focus on flat events in general domain, while there are less attempts to detect nested and overlapping events. These existing systems are built on given entities and they depend on external syntactic tools. Results We propose an end-to-end neural nested event extraction model named DeepEventMine that extracts multiple overlapping directed acyclic graph structures from a raw sentence. On the top of the bidirectional encoder representations from transformers model, our model detects nested entities and triggers, roles, nested events and their modifications in an end-to-end manner without any syntactic tools. Our DeepEventMine model achieves the new state-of-the-art performance on seven biomedical nested event extraction tasks. Even when gold entities are unavailable, our model can detect events from raw text with promising performance. Availability and implementation Our codes and models to reproduce the results are available at: https://github.com/aistairc/DeepEventMine. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa540