Brassicaceae transcriptomes reveal convergent evolution of super-accumulation of sinigrin
Wasabi, horseradish and mustard are popular pungent crops in which the characteristic bioactive hydrolysis of specialized glucosinolates (GSLs) occurs. Although the metabolic pathways of GSLs are well elucidated, how plants have evolved convergent mechanisms to accumulate identical GSL components re...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-12, Vol.3 (1), p.779-779, Article 779 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wasabi, horseradish and mustard are popular pungent crops in which the characteristic bioactive hydrolysis of specialized glucosinolates (GSLs) occurs. Although the metabolic pathways of GSLs are well elucidated, how plants have evolved convergent mechanisms to accumulate identical GSL components remains largely unknown. In this study, we discovered that sinigrin is predominantly synthesized in wasabi, horseradish and mustard in
Brassicaceae
. We de novo assembled the transcriptomes of the three species, revealing the expression patterns of gene clusters associated with chain elongation, side chain modification and transport. Our analysis further revealed that several gene clusters were convergently selected during evolution, exhibiting convergent shifts in amino acid preferences in mustard, wasabi and horseradish. Collectively, our findings provide insights into how unrelated crop species evolve the capacity for sinigrin super-accumulation and thus promise a potent strategy for engineering metabolic pathways at multiple checkpoints to fortify bioactive compounds for condiment or pharmaceutical purposes.
Jinghua Yang et al. provide the de novo assemblies of the transcriptomes of wasabi, horseradish and mustard to examine the evolution of specialized glucosinolates. This study demonstrates convergent evolution of super-accumulation of sinigrin in these taxa and may allow for potential strategies to engineer metabolic pathways of bioactive compounds for human food sources or pharmaceutical purposes. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-020-01523-x |