Evidence for Environmental-Human Microbiota Transfer at a Manufacturing Facility with Novel Work-related Respiratory Disease

Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease. As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2020-12, Vol.202 (12), p.1678-1688
Hauptverfasser: Wu, Benjamin G, Kapoor, Bianca, Cummings, Kristin J, Stanton, Marcia L, Nett, Randall J, Kreiss, Kathleen, Abraham, Jerrold L, Colby, Thomas V, Franko, Angela D, Green, Francis H Y, Sanyal, Soma, Clemente, Jose C, Gao, Zhan, Coffre, Maryaline, Meyn, Peter, Heguy, Adriana, Li, Yonghua, Sulaiman, Imran, Borbet, Timothy C, Koralov, Sergei B, Tallaksen, Robert J, Wendland, Douglas, Bachelder, Vance D, Boylstein, Randy J, Park, Ju-Hyeong, Cox-Ganser, Jean M, Virji, M Abbas, Crawford, Judith A, Edwards, Nicole T, Veillette, Marc, Duchaine, Caroline, Warren, Krista, Lundeen, Sarah, Blaser, Martin J, Segal, Leopoldo N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease. As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers. Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. effects of MWF exposure on murine B cells were assessed. An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with , the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation , a hallmark cell subtype found in the pathology of index cases. Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.202001-0197OC