Potassium channel dysfunction in human neuronal models of Angelman syndrome

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-12, Vol.366 (6472), p.1486-1492
Hauptverfasser: Sun, Alfred Xuyang, Yuan, Qiang, Fukuda, Masahiro, Yu, Weonjin, Yan, Haidun, Lim, Grace Gui Yin, Nai, Mui Hoon, D’Agostino, Giuseppe Alessandro, Tran, Hoang-Dai, Itahana, Yoko, Wang, Danlei, Lokman, Hidayat, Itahana, Koji, Lim, Stephanie Wai Lin, Tang, Jiong, Chang, Ya Yin, Zhang, Menglan, Cook, Stuart A., Rackham, Owen J. L., Lim, Chwee Teck, Tan, Eng King, Ng, Huck Hui, Lim, Kah Leong, Jiang, Yong-Hui, Je, Hyunsoo Shawn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aav5386