LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation
In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitig...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (23), p.6853 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 6853 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Zhou, Yixuan Zhang, Weimin Shi, Yongliang Wang, Ziyu Li, Fangxing Huang, Qiang |
description | In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement. |
doi_str_mv | 10.3390/s20236853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7731162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f491ab4756784533bdde41d6f0190fe4</doaj_id><sourcerecordid>2466777650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-791d80c2ad44febbc988267d622c5588ee0e9104d4429249bb668d7c12e2ce633</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMo9kMv_AMy4I29WJucZPLhhSCL1cIWS2m9DZnkzJp1dtImMwv9985269J6lXDeJw-HvIS8Y_QT54aeFqDApa75C3LIBIiZBqAvn9wPyFEpKzpRnOvX5IBzkJJRfUguFpfzs8_VVWrGMlTzlDN2boipr66z839iv6w20VWL5F0Xh_vqMmPBvNnO98CvKQoPj96QV63rCr59PI_Jzdm36_mP2eLn9_P518XMC2mGmTIsaOrBBSFabBpvtAapggTwda01IkXDqJhiMCBM00ipg_IMEDxKzo_J-c4bklvZ2xzXLt_b5KJ9GKS8tC4P0XdoW2GYa4SqpdKi5rwJAQULsqXM0BbF5Pqyc92OzRqDx37IrnsmfZ708bddpo1VijMmYRJ8fBTkdDdiGew6Fo9d53pMY7EgpFRKyZpO6If_0FUacz991ZZSYGqjt8KTHeVzKiVju1-GUbst3O4Ln9j3T7ffk_8a5n8B9SmkTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467295982</pqid></control><display><type>article</type><title>LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhou, Yixuan ; Zhang, Weimin ; Shi, Yongliang ; Wang, Ziyu ; Li, Fangxing ; Huang, Qiang</creator><creatorcontrib>Zhou, Yixuan ; Zhang, Weimin ; Shi, Yongliang ; Wang, Ziyu ; Li, Fangxing ; Huang, Qiang</creatorcontrib><description>In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20236853</identifier><identifier>PMID: 33266108</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; correlation filter ; Datasets ; Decontamination ; Deep learning ; locality preserving ; model drift ; object tracking ; Real time ; Teaching methods</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (23), p.6853</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-791d80c2ad44febbc988267d622c5588ee0e9104d4429249bb668d7c12e2ce633</citedby><cites>FETCH-LOGICAL-c469t-791d80c2ad44febbc988267d622c5588ee0e9104d4429249bb668d7c12e2ce633</cites><orcidid>0000-0002-9954-9313 ; 0000-0001-8206-3176 ; 0000-0002-0808-5593 ; 0000-0001-5269-4161 ; 0000-0003-1928-363X ; 0000-0001-6632-0144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731162/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731162/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33266108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Zhang, Weimin</creatorcontrib><creatorcontrib>Shi, Yongliang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Huang, Qiang</creatorcontrib><title>LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement.</description><subject>Algorithms</subject><subject>correlation filter</subject><subject>Datasets</subject><subject>Decontamination</subject><subject>Deep learning</subject><subject>locality preserving</subject><subject>model drift</subject><subject>object tracking</subject><subject>Real time</subject><subject>Teaching methods</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMo9kMv_AMy4I29WJucZPLhhSCL1cIWS2m9DZnkzJp1dtImMwv9985269J6lXDeJw-HvIS8Y_QT54aeFqDApa75C3LIBIiZBqAvn9wPyFEpKzpRnOvX5IBzkJJRfUguFpfzs8_VVWrGMlTzlDN2boipr66z839iv6w20VWL5F0Xh_vqMmPBvNnO98CvKQoPj96QV63rCr59PI_Jzdm36_mP2eLn9_P518XMC2mGmTIsaOrBBSFabBpvtAapggTwda01IkXDqJhiMCBM00ipg_IMEDxKzo_J-c4bklvZ2xzXLt_b5KJ9GKS8tC4P0XdoW2GYa4SqpdKi5rwJAQULsqXM0BbF5Pqyc92OzRqDx37IrnsmfZ708bddpo1VijMmYRJ8fBTkdDdiGew6Fo9d53pMY7EgpFRKyZpO6If_0FUacz991ZZSYGqjt8KTHeVzKiVju1-GUbst3O4Ln9j3T7ffk_8a5n8B9SmkTQ</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Zhou, Yixuan</creator><creator>Zhang, Weimin</creator><creator>Shi, Yongliang</creator><creator>Wang, Ziyu</creator><creator>Li, Fangxing</creator><creator>Huang, Qiang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9954-9313</orcidid><orcidid>https://orcid.org/0000-0001-8206-3176</orcidid><orcidid>https://orcid.org/0000-0002-0808-5593</orcidid><orcidid>https://orcid.org/0000-0001-5269-4161</orcidid><orcidid>https://orcid.org/0000-0003-1928-363X</orcidid><orcidid>https://orcid.org/0000-0001-6632-0144</orcidid></search><sort><creationdate>20201130</creationdate><title>LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation</title><author>Zhou, Yixuan ; Zhang, Weimin ; Shi, Yongliang ; Wang, Ziyu ; Li, Fangxing ; Huang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-791d80c2ad44febbc988267d622c5588ee0e9104d4429249bb668d7c12e2ce633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>correlation filter</topic><topic>Datasets</topic><topic>Decontamination</topic><topic>Deep learning</topic><topic>locality preserving</topic><topic>model drift</topic><topic>object tracking</topic><topic>Real time</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Zhang, Weimin</creatorcontrib><creatorcontrib>Shi, Yongliang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Huang, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yixuan</au><au>Zhang, Weimin</au><au>Shi, Yongliang</au><au>Wang, Ziyu</au><au>Li, Fangxing</au><au>Huang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>6853</spage><pages>6853-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33266108</pmid><doi>10.3390/s20236853</doi><orcidid>https://orcid.org/0000-0002-9954-9313</orcidid><orcidid>https://orcid.org/0000-0001-8206-3176</orcidid><orcidid>https://orcid.org/0000-0002-0808-5593</orcidid><orcidid>https://orcid.org/0000-0001-5269-4161</orcidid><orcidid>https://orcid.org/0000-0003-1928-363X</orcidid><orcidid>https://orcid.org/0000-0001-6632-0144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-11, Vol.20 (23), p.6853 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7731162 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms correlation filter Datasets Decontamination Deep learning locality preserving model drift object tracking Real time Teaching methods |
title | LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPCF:%20Robust%20Correlation%20Tracking%20via%20Locality%20Preserving%20Tracking%20Validation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhou,%20Yixuan&rft.date=2020-11-30&rft.volume=20&rft.issue=23&rft.spage=6853&rft.pages=6853-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20236853&rft_dat=%3Cproquest_doaj_%3E2466777650%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467295982&rft_id=info:pmid/33266108&rft_doaj_id=oai_doaj_org_article_f491ab4756784533bdde41d6f0190fe4&rfr_iscdi=true |