LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation

In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (23), p.6853
Hauptverfasser: Zhou, Yixuan, Zhang, Weimin, Shi, Yongliang, Wang, Ziyu, Li, Fangxing, Huang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20236853