Characterization of Crater Area in a Target Penetrated by a Wf/Zr-Based Amorphous Matrix Composite Projectile

Tungsten fiber-reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 amorphous matrix composites (hereinafter referred to as Wf/Zr-based amorphous matrix composites) are considered as a potential new generation of projectile material, while the penetration behavior of Wf/Zr-based amorphous matrix composites is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-12, Vol.13 (23), p.5523
Hauptverfasser: Ye, Xianghai, Zou, Minming, Chen, Jiankang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tungsten fiber-reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 amorphous matrix composites (hereinafter referred to as Wf/Zr-based amorphous matrix composites) are considered as a potential new generation of projectile material, while the penetration behavior of Wf/Zr-based amorphous matrix composites is not fully clear yet. In order to better understand the penetration behavior of this composite material and study its armor-piercing performance, a ballistic experiment was performed and the hardness and microstructure around the crater of a target material were studied. A ballistic experiment was performed with a projectile of Wf/Zr-based amorphous matrix composite and a target of 4043 steel. After the ballistic experiment, the target was cut through the crater using a wire cutting machine into a sample with size 150 mm × 40 mm × 20 mm, which was later polished by different types of sandpaper. The micro-hardness was analyzed in a micro-hardness tester, and the microstructure was observed by SEM. According to this study, three layers were identified in the direction lateral to the crater, consisting of a martensite layer, a deformation strengthening layer, and the original structure layer. Moreover, the martensite layer initially thickened and then thinned in the direction longitudinal to the crater.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13235523