Identification of a SARS-like bat coronavirus that shares structural features with the spike glycoprotein receptor-binding domain of SARS-CoV-2
SARS-CoV-2 is a recently emerged coronavirus that binds angiotensin-converting enzyme 2 (ACE2) for cell entry via its receptor-binding domain (RBD) on a surface-expressed spike glycoprotein. Studies show that despite its similarities to severe acute respiratory syndrome (SARS) coronavirus, there are...
Gespeichert in:
Veröffentlicht in: | Access microbiology 2020-11, Vol.2 (11), p.acmi000166-acmi000166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SARS-CoV-2 is a recently emerged coronavirus that binds angiotensin-converting enzyme 2 (ACE2) for cell entry via its receptor-binding domain (RBD) on a surface-expressed spike glycoprotein. Studies show that despite its similarities to severe acute respiratory syndrome (SARS) coronavirus, there are critical differences in key RBD residues when compared to SARS-CoV-2. Here we present a short
in silico
study, showing that SARS-like bat coronavirus Rs3367 shares a high conservation with SARS-CoV-2 in important RBD residues for ACE2 binding: SARS-CoV-2’s Phe486, Thr500, Asn501 and Tyr505; implicated in receptor-binding strength and host-range determination. These features were not shared with other studied bat coronaviruses belonging to the
betacoronavirus
genus, including RaTG13, the closest reported bat coronavirus to SARS-CoV-2’s spike protein. Sequence and phylogeny analyses were followed by the computation of a reliable model of the RBD of SARS-like bat coronavirus Rs3367, which allowed structural insight of the conserved residues. Superimposition of this model on the SARS-CoV-2 ACE2-RBD complex revealed critical ACE2 contacts are also maintained. In addition, residue Asn488
Rs3367
interacted with a previously defined pocket on ACE2 composed of Tyr41, Lys353 and Asp355. When compared to available SARS-CoV-2 crystal structure data, Asn501
SARS-CoV-2
showed a different interaction with the ACE2 pocket. Taken together, this study offers molecular insights on RBD-receptor interactions with implications for vaccine design. |
---|---|
ISSN: | 2516-8290 2516-8290 |
DOI: | 10.1099/acmi.0.000166 |