Evaluation of metabolic, antioxidant and anti-inflammatory effects of Garcinia kola on diabetic rats

Garcinia kola (G. kola), is a plant characterized by its hypoglycemic properties. We recently reported our findings on the extracts of G. kola, in which we found that it prevented the loss of inflammation-sensible neuronal populations in streptozotocin (STZ)-induced rat models of type 1 diabetes mel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Saudi journal of biological sciences 2020-12, Vol.27 (12), p.3641-3646
Hauptverfasser: Idris, Ahmed E., Seke Etet, Paul F., Saeed, Abdalla A., Farahna, Mohammed, Satti, Gwiria M.H., AlShammari, Shuaa Z., Hamza, Muaawia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Garcinia kola (G. kola), is a plant characterized by its hypoglycemic properties. We recently reported our findings on the extracts of G. kola, in which we found that it prevented the loss of inflammation-sensible neuronal populations in streptozotocin (STZ)-induced rat models of type 1 diabetes mellitus (T1DM). In the present study we assessed the effect of G. kola bioactive compounds extracted successively with water, hexane, methylene chloride, ethyl acetate, and butanol. through analyzing biochemical markers of oxidative stress, inflammation, and metabolic function in STZ-induced diabetic animals. Animals made diabetic by a single injection with STZ (60 mg/kg, i.p.), were treated daily with either vehicle solution, insulin, or G. kola extracts and its fractions from the first to the 6th-week post-injection. Biochemical markers; glucose, insulin, C-peptide, neuron-specific enolase (NSE), creatinine kinase, glutathione peroxidase, malondialdehyde (MDA), resistin, soluble E-selectin (SE-Selectin), and C-reactive proteins (CRP) levels in the sera were determined in the study groups. A marked increase in blood glucose (209.26% of baseline value), and a decrease in body weight (−12.37%) were observed in diabetic control animals but not in animals treated with either insulin or G. kola extracts and its fractions. The sub-fraction F5, G. kola ethyl acetate had the highest bioactive activities, with a maintenance of blood sugar, malondialdehyde, C-peptide, E-selectin, C-reactive protein (CRP) and neuron-specific enolase (NSE) to levels and responses comparable to healthy non-diabetic vehicle group and the positive control diabetic insulin-treated group. Our findings suggest that G. kola may have a strong therapeutic potential against T1DM and its microvascular complications.
ISSN:1319-562X
2213-7106
DOI:10.1016/j.sjbs.2020.08.006