Chloroquine Sensitizes GNAQ/11 -mutated Melanoma to MEK1/2 Inhibition

Mutational activation of or ( ), detected in >90% of uveal melanomas, leads to constitutive activation of oncogenic pathways, including MAPK and YAP. To date, chemo- or pathway-targeted therapies, either alone or in combination, have proven ineffective in the treatment of patients with metastatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2020-12, Vol.26 (23), p.6374-6386
Hauptverfasser: Truong, Amanda, Yoo, Jae Hyuk, Scherzer, Michael T, Sanchez, John Michael S, Dale, Kali J, Kinsey, Conan G, Richards, Jackson R, Shin, Donghan, Ghazi, Phaedra C, Onken, Michael D, Blumer, Kendall J, Odelberg, Shannon J, McMahon, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutational activation of or ( ), detected in >90% of uveal melanomas, leads to constitutive activation of oncogenic pathways, including MAPK and YAP. To date, chemo- or pathway-targeted therapies, either alone or in combination, have proven ineffective in the treatment of patients with metastatic uveal melanoma. We tested the efficacy of chloroquine or hydroxychloroquine, in combination with MAPK pathway inhibition in -mutated cells and and identified mechanisms of MEK1/2 inhibitor plus chloroquine-induced cytotoxicity. Inhibition of GNAQ/11-mediated activation of MAPK signaling resulted in the induction of autophagy. Combined inhibition of Gα and autophagy or lysosome function resulted in enhanced cell death. Moreover, the combination of MEK1/2 inhibition, using trametinib, with the lysosome inhibitor, chloroquine, also increased cytotoxicity. Treatment of mice bearing GNAQ/11-driven melanomas with trametinib plus hydroxychloroquine resulted in inhibition of tumor growth and significantly prolonged survival. Interestingly, lysosomal- and autophagy-specific inhibition with bafilomycin A1 was not sufficient to promote cytotoxicity in combination with trametinib. However, the addition of YAP inhibition with trametinib plus bafilomycin A1 resulted in cell death at comparable levels to trametinib plus chloroquine (T/CQ) treatment. Furthermore, T/CQ-treated cells displayed decreased YAP nuclear localization and decreased YAP transcriptional activity. Expression of a constitutively active YAP mutant conferred resistance to T/CQ-induced cell death. These results suggest that YAP, MEK1/2, and lysosome function are necessary and critical targets for the therapy of GNAQ/11-driven melanoma, and identify trametinib plus hydroxychloroquine as a potential treatment strategy for metastatic uveal melanoma.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-20-1675