Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy

Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-14
Hauptverfasser: Mao, Xiao-Yuan, Yin, Xi-Xi, Xia, Qin-Xuan, Chen, Fang-Hui, Guan, Qi-Wen, Yang, Nan, Zhou, Hong-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
ISSN:1942-0900
1942-0994
DOI:10.1155/2020/6687185