PSVII-2 Differentially expressed genes and their biological function in skeletal muscle of calves born from cows with or without protein supplementation during mid-gestation

Gestating cows have an increased nutrient demand to meet the needs of developing the fetus and the mid-gestation is a critical period for the fetal skeletal muscle development. The aim of this study was to evaluate the skeletal muscle transcriptome in the progeny as a function of the maternal protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2020-11, Vol.98 (Supplement_3), p.165-166
Hauptverfasser: Carvalho, Elisa B, Sanglard, Letícia P, Nascimento, Karolina B, Meneses, Javier M, Casagrande, Daniel R, Duarte, Marcio, Gionbelli, Mateus P, Serão, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gestating cows have an increased nutrient demand to meet the needs of developing the fetus and the mid-gestation is a critical period for the fetal skeletal muscle development. The aim of this study was to evaluate the skeletal muscle transcriptome in the progeny as a function of the maternal protein nutrition during mid-gestation. Eleven Tabapuã cows and their male calves were used in this study. In the first third of gestation (0 to 100 days of gestation; dg), all cows were kept on pasture. From 100 to 200 dg, the control group (CTRL; 7 animals) received a basal diet achieving 5.5% crude protein (CP), whereas the supplemented group (SUPPL; 4 animals) received a basal diet plus protein supplementation (40% CP). After 200 dg, all animals received the same diet. Weaning was performed at 205 ± 7.5 days of age and animals were kept on pasture until reaching 240 days of age, when they were transferred to a feedlot. Muscle samples were collected at 260 days of age and RNA was extracted for RNA-seq analysis. Gene expression data was analyzed with a negative binomial model to identify (q-value ≤ 0.05) differentially expressed genes (DEG) between treatments. A total of 716 DEG were identified (289 DEG up-regulated and 427 down-regulated in SUPPL group; q-value ≤ 0.05). From the 10 most significant down-regulated DEG in the SUPPL group, two genes associated with apoptotic process were identified: MAPK8IP1 and GRINA, with log2 Fold-Changes (log2FC) of 1.04 and 0.49, respectively. From the 10 most significant up-regulated DEG in the SUPPL group, mTOR was identified, with log2FC=0.31. This is a well-known gene involved in muscle protein synthesis. In conclusion, maternal protein supplementation during mid-gestation affects the expression of genes related to energy metabolism and muscle development, which can lead to long-term impacts on production efficiency.
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skaa054.293