Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles
Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-10, Vol.59 (44), p.19696-19701 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19701 |
---|---|
container_issue | 44 |
container_start_page | 19696 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Morris, Peter D. McPherson, Ian J. Edwards, Martin A. Kashtiban, Reza J. Walton, Richard I. Unwin, Patrick R. |
description | Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time. |
doi_str_mv | 10.1002/anie.202007146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451816826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhUcIREthy3okNmUxwX9jz2yQqiiBSm2zKKwtj30ncXHsYDtU2fURkHjDPgmOUhW1G1a25O8c33NPVb3HaIIRIp-UtzAhiCAkMOMvqmPcEtxQIejLcmeUNqJr8VH1JqWbwncd4q-rI0o4paxlx1WeOdA5Wl3PLThzf_d7GnyOwTkw9fXO5xUkm2rlTT1dqah0hmiTyjb4Ooz1tfVLB_UlZOXu7_4s4rIMpIvLPKo13Ib4oz69XMw_1lfKh42K2WoH6W31alQuwbuH86T6Pp99m35tLhZfzqdnF41mHeGNaVULA1aMjEJ0RlCq2DCOAwjUDwPpRwPAWyo6zXvWggYzaKOHsop-RNhQelJ9PvhutsMajIaSTDm5iXat4k4GZeXTF29Xchl-ScF7SnpcDE4fDGL4uYWU5domDc4pD2GbJGEEY4xavv_rwzP0JmyjL_EK1eIO8xKpUJMDpWNIKcL4OAxGcl-o3BcqHwstgv4guLUOdv-h5dnV-eyf9i8epqi7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451816826</pqid></control><display><type>article</type><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</creator><creatorcontrib>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</creatorcontrib><description>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007146</identifier><identifier>PMID: 32633454</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzene ; Biomedical materials ; Communication ; Communications ; Copper ; Electric fields ; Electrochemistry ; Mass transport ; Metal-organic frameworks ; metal–organic frameworks (MOFs) ; Nanocrystals ; Nanoparticles ; nanopipettes ; Particle size distribution ; Porosity ; Reagents ; resistive pulse sensing ; Size distribution ; Translocation</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19696-19701</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</citedby><cites>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</cites><orcidid>0000-0001-8072-361X ; 0000-0003-3106-2178 ; 0000-0002-3871-1647 ; 0000-0002-9377-515X ; 0000-0001-9706-2774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007146$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007146$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Morris, Peter D.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Edwards, Martin A.</creatorcontrib><creatorcontrib>Kashtiban, Reza J.</creatorcontrib><creatorcontrib>Walton, Richard I.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><title>Angewandte Chemie International Edition</title><description>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</description><subject>Benzene</subject><subject>Biomedical materials</subject><subject>Communication</subject><subject>Communications</subject><subject>Copper</subject><subject>Electric fields</subject><subject>Electrochemistry</subject><subject>Mass transport</subject><subject>Metal-organic frameworks</subject><subject>metal–organic frameworks (MOFs)</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>nanopipettes</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Reagents</subject><subject>resistive pulse sensing</subject><subject>Size distribution</subject><subject>Translocation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1uEzEUhUcIREthy3okNmUxwX9jz2yQqiiBSm2zKKwtj30ncXHsYDtU2fURkHjDPgmOUhW1G1a25O8c33NPVb3HaIIRIp-UtzAhiCAkMOMvqmPcEtxQIejLcmeUNqJr8VH1JqWbwncd4q-rI0o4paxlx1WeOdA5Wl3PLThzf_d7GnyOwTkw9fXO5xUkm2rlTT1dqah0hmiTyjb4Ooz1tfVLB_UlZOXu7_4s4rIMpIvLPKo13Ib4oz69XMw_1lfKh42K2WoH6W31alQuwbuH86T6Pp99m35tLhZfzqdnF41mHeGNaVULA1aMjEJ0RlCq2DCOAwjUDwPpRwPAWyo6zXvWggYzaKOHsop-RNhQelJ9PvhutsMajIaSTDm5iXat4k4GZeXTF29Xchl-ScF7SnpcDE4fDGL4uYWU5domDc4pD2GbJGEEY4xavv_rwzP0JmyjL_EK1eIO8xKpUJMDpWNIKcL4OAxGcl-o3BcqHwstgv4guLUOdv-h5dnV-eyf9i8epqi7</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Morris, Peter D.</creator><creator>McPherson, Ian J.</creator><creator>Edwards, Martin A.</creator><creator>Kashtiban, Reza J.</creator><creator>Walton, Richard I.</creator><creator>Unwin, Patrick R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8072-361X</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0002-3871-1647</orcidid><orcidid>https://orcid.org/0000-0002-9377-515X</orcidid><orcidid>https://orcid.org/0000-0001-9706-2774</orcidid></search><sort><creationdate>20201026</creationdate><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><author>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>Biomedical materials</topic><topic>Communication</topic><topic>Communications</topic><topic>Copper</topic><topic>Electric fields</topic><topic>Electrochemistry</topic><topic>Mass transport</topic><topic>Metal-organic frameworks</topic><topic>metal–organic frameworks (MOFs)</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>nanopipettes</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Reagents</topic><topic>resistive pulse sensing</topic><topic>Size distribution</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Peter D.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Edwards, Martin A.</creatorcontrib><creatorcontrib>Kashtiban, Reza J.</creatorcontrib><creatorcontrib>Walton, Richard I.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Peter D.</au><au>McPherson, Ian J.</au><au>Edwards, Martin A.</au><au>Kashtiban, Reza J.</au><au>Walton, Richard I.</au><au>Unwin, Patrick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19696</spage><epage>19701</epage><pages>19696-19701</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32633454</pmid><doi>10.1002/anie.202007146</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8072-361X</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0002-3871-1647</orcidid><orcidid>https://orcid.org/0000-0002-9377-515X</orcidid><orcidid>https://orcid.org/0000-0001-9706-2774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19696-19701 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693291 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benzene Biomedical materials Communication Communications Copper Electric fields Electrochemistry Mass transport Metal-organic frameworks metal–organic frameworks (MOFs) Nanocrystals Nanoparticles nanopipettes Particle size distribution Porosity Reagents resistive pulse sensing Size distribution Translocation |
title | Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field%E2%80%90Controlled%20Synthesis%20and%20Characterisation%20of%20Single%20Metal%E2%80%93Organic%E2%80%90Framework%20(MOF)%20Nanoparticles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Morris,%20Peter%20D.&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19696&rft.epage=19701&rft.pages=19696-19701&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007146&rft_dat=%3Cproquest_pubme%3E2451816826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451816826&rft_id=info:pmid/32633454&rfr_iscdi=true |