Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles

Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-10, Vol.59 (44), p.19696-19701
Hauptverfasser: Morris, Peter D., McPherson, Ian J., Edwards, Martin A., Kashtiban, Reza J., Walton, Richard I., Unwin, Patrick R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19701
container_issue 44
container_start_page 19696
container_title Angewandte Chemie International Edition
container_volume 59
creator Morris, Peter D.
McPherson, Ian J.
Edwards, Martin A.
Kashtiban, Reza J.
Walton, Richard I.
Unwin, Patrick R.
description Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes. Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.
doi_str_mv 10.1002/anie.202007146
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451816826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhUcIREthy3okNmUxwX9jz2yQqiiBSm2zKKwtj30ncXHsYDtU2fURkHjDPgmOUhW1G1a25O8c33NPVb3HaIIRIp-UtzAhiCAkMOMvqmPcEtxQIejLcmeUNqJr8VH1JqWbwncd4q-rI0o4paxlx1WeOdA5Wl3PLThzf_d7GnyOwTkw9fXO5xUkm2rlTT1dqah0hmiTyjb4Ooz1tfVLB_UlZOXu7_4s4rIMpIvLPKo13Ib4oz69XMw_1lfKh42K2WoH6W31alQuwbuH86T6Pp99m35tLhZfzqdnF41mHeGNaVULA1aMjEJ0RlCq2DCOAwjUDwPpRwPAWyo6zXvWggYzaKOHsop-RNhQelJ9PvhutsMajIaSTDm5iXat4k4GZeXTF29Xchl-ScF7SnpcDE4fDGL4uYWU5domDc4pD2GbJGEEY4xavv_rwzP0JmyjL_EK1eIO8xKpUJMDpWNIKcL4OAxGcl-o3BcqHwstgv4guLUOdv-h5dnV-eyf9i8epqi7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451816826</pqid></control><display><type>article</type><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</creator><creatorcontrib>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</creatorcontrib><description>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes. Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007146</identifier><identifier>PMID: 32633454</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzene ; Biomedical materials ; Communication ; Communications ; Copper ; Electric fields ; Electrochemistry ; Mass transport ; Metal-organic frameworks ; metal–organic frameworks (MOFs) ; Nanocrystals ; Nanoparticles ; nanopipettes ; Particle size distribution ; Porosity ; Reagents ; resistive pulse sensing ; Size distribution ; Translocation</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19696-19701</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</citedby><cites>FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</cites><orcidid>0000-0001-8072-361X ; 0000-0003-3106-2178 ; 0000-0002-3871-1647 ; 0000-0002-9377-515X ; 0000-0001-9706-2774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007146$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007146$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Morris, Peter D.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Edwards, Martin A.</creatorcontrib><creatorcontrib>Kashtiban, Reza J.</creatorcontrib><creatorcontrib>Walton, Richard I.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><title>Angewandte Chemie International Edition</title><description>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes. Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</description><subject>Benzene</subject><subject>Biomedical materials</subject><subject>Communication</subject><subject>Communications</subject><subject>Copper</subject><subject>Electric fields</subject><subject>Electrochemistry</subject><subject>Mass transport</subject><subject>Metal-organic frameworks</subject><subject>metal–organic frameworks (MOFs)</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>nanopipettes</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Reagents</subject><subject>resistive pulse sensing</subject><subject>Size distribution</subject><subject>Translocation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1uEzEUhUcIREthy3okNmUxwX9jz2yQqiiBSm2zKKwtj30ncXHsYDtU2fURkHjDPgmOUhW1G1a25O8c33NPVb3HaIIRIp-UtzAhiCAkMOMvqmPcEtxQIejLcmeUNqJr8VH1JqWbwncd4q-rI0o4paxlx1WeOdA5Wl3PLThzf_d7GnyOwTkw9fXO5xUkm2rlTT1dqah0hmiTyjb4Ooz1tfVLB_UlZOXu7_4s4rIMpIvLPKo13Ib4oz69XMw_1lfKh42K2WoH6W31alQuwbuH86T6Pp99m35tLhZfzqdnF41mHeGNaVULA1aMjEJ0RlCq2DCOAwjUDwPpRwPAWyo6zXvWggYzaKOHsop-RNhQelJ9PvhutsMajIaSTDm5iXat4k4GZeXTF29Xchl-ScF7SnpcDE4fDGL4uYWU5domDc4pD2GbJGEEY4xavv_rwzP0JmyjL_EK1eIO8xKpUJMDpWNIKcL4OAxGcl-o3BcqHwstgv4guLUOdv-h5dnV-eyf9i8epqi7</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Morris, Peter D.</creator><creator>McPherson, Ian J.</creator><creator>Edwards, Martin A.</creator><creator>Kashtiban, Reza J.</creator><creator>Walton, Richard I.</creator><creator>Unwin, Patrick R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8072-361X</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0002-3871-1647</orcidid><orcidid>https://orcid.org/0000-0002-9377-515X</orcidid><orcidid>https://orcid.org/0000-0001-9706-2774</orcidid></search><sort><creationdate>20201026</creationdate><title>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</title><author>Morris, Peter D. ; McPherson, Ian J. ; Edwards, Martin A. ; Kashtiban, Reza J. ; Walton, Richard I. ; Unwin, Patrick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4826-d5a5eb1a42f778d733a4bffbe709bb29fdee65378c6945ecedbcdcb0079f01d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>Biomedical materials</topic><topic>Communication</topic><topic>Communications</topic><topic>Copper</topic><topic>Electric fields</topic><topic>Electrochemistry</topic><topic>Mass transport</topic><topic>Metal-organic frameworks</topic><topic>metal–organic frameworks (MOFs)</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>nanopipettes</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Reagents</topic><topic>resistive pulse sensing</topic><topic>Size distribution</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Peter D.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Edwards, Martin A.</creatorcontrib><creatorcontrib>Kashtiban, Reza J.</creatorcontrib><creatorcontrib>Walton, Richard I.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Peter D.</au><au>McPherson, Ian J.</au><au>Edwards, Martin A.</au><au>Kashtiban, Reza J.</au><au>Walton, Richard I.</au><au>Unwin, Patrick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19696</spage><epage>19701</epage><pages>19696-19701</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes. Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32633454</pmid><doi>10.1002/anie.202007146</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8072-361X</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0002-3871-1647</orcidid><orcidid>https://orcid.org/0000-0002-9377-515X</orcidid><orcidid>https://orcid.org/0000-0001-9706-2774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19696-19701
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693291
source Wiley Online Library Journals Frontfile Complete
subjects Benzene
Biomedical materials
Communication
Communications
Copper
Electric fields
Electrochemistry
Mass transport
Metal-organic frameworks
metal–organic frameworks (MOFs)
Nanocrystals
Nanoparticles
nanopipettes
Particle size distribution
Porosity
Reagents
resistive pulse sensing
Size distribution
Translocation
title Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field%E2%80%90Controlled%20Synthesis%20and%20Characterisation%20of%20Single%20Metal%E2%80%93Organic%E2%80%90Framework%20(MOF)%20Nanoparticles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Morris,%20Peter%20D.&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19696&rft.epage=19701&rft.pages=19696-19701&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007146&rft_dat=%3Cproquest_pubme%3E2451816826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451816826&rft_id=info:pmid/32633454&rfr_iscdi=true