Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles
Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-10, Vol.59 (44), p.19696-19701 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene‐1,3,5‐tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Electrochemical control over the synthesis of nanoparticles of the metal–organic framework (MOF) HKUST‐1 is achieved using a nanopipette injection method to locally mix metal salt precursors and ligand reagents. The MOF nanocrystals are collected and characterised on a TEM grid. Single nanoparticle crystallisation is controlled and monitored in real time. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202007146 |