Consequences of Molecular Architecture on the Supramolecular Assembly of Discrete Block Co-oligomers

Supramolecular block copolymers composed of discrete blocks have promising properties for nanotechnology resulting from their ability to combine well-defined morphologies with good bulk material properties. Here, we present the impact of a well-defined siloxane block in either the main-chain or pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2020-11, Vol.53 (22), p.10289-10298
Hauptverfasser: Lamers, Brigitte A. G, van der Tol, Joost J. B, Vonk, Kasper M, de Waal, Bas F. M, Palmans, Anja R. A, Meijer, E. W, Vantomme, Ghislaine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supramolecular block copolymers composed of discrete blocks have promising properties for nanotechnology resulting from their ability to combine well-defined morphologies with good bulk material properties. Here, we present the impact of a well-defined siloxane block in either the main-chain or present as pendant grafts on the properties of supramolecular block copolymers that form ordered nanostructures with sub-5 nm domains. For this, two types of supramolecular block copolymers were synthesized based on the ureidopyrimidinone–urethane (UPy-UT) motif. In the first, oligodimethyl­siloxanes (oDMS) of discrete length were end-capped with the UPy-UT motif, affording main-chain UPy-UT-Si n . In the second, the UPy-UT motif was grafted with discrete oDMS affording grafted UPy-UT- g -Si 7 . For the two systems, the compositions are similar; only the molecular architecture differs. In both cases, crystallization of the UPy-UT block is in synergy with phase segregation of the oDMS, resulting in the formation of lamellar morphologies. The grafted UPy-UT- g -Si 7 can form long-range ordered lamellae, resulting in the formation of micrometer-sized 2D sheets of supramolecular polymers which show brittle properties. In contrast, UPy-UT-Si n forms a ductile material. As the compositions of both BCOs are similar, the differences in morphology and mechanical properties are a direct consequence of the molecular architecture. These results showcase how molecular design of the building block capable of forming block copolymers translates into controlled nanostructures and material properties as a result of the supramolecular nature of the interactions.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.0c02237