Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity

Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a potential antiviral therapeutic approach, but little is known about...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-11, Vol.68 (47), p.13982-13989
Hauptverfasser: Liu, Xiaocao, Raghuvanshi, Ruma, Ceylan, Fatma Duygu, Bolling, Bradley W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a potential antiviral therapeutic approach, but little is known about how dietary compounds interact with ACE2. The objective of this study was to determine if flavonoids and other polyphenols with B-ring 3′,4′-hydroxylation inhibit recombinant human (rh)­ACE2 activity. rhACE2 activity was assessed with the fluorogenic substrate Mca-APK­(Dnp). Polyphenols reduced rhACE2 activity by 15–66% at 10 μM. Rutin, quercetin-3-O-glucoside, tamarixetin, and 3,4-dihydroxyphenylacetic acid inhibited rhACE2 activity by 42–48%. Quercetin was the most potent rhACE2 inhibitor among the polyphenols tested, with an IC50 of 4.48 μM. Thus, quercetin, its metabolites, and polyphenols with 3′,4′-hydroxylation inhibited rhACE2 activity at physiologically relevant concentrations in vitro.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c05064