Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity
Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a potential antiviral therapeutic approach, but little is known about...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2020-11, Vol.68 (47), p.13982-13989 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a potential antiviral therapeutic approach, but little is known about how dietary compounds interact with ACE2. The objective of this study was to determine if flavonoids and other polyphenols with B-ring 3′,4′-hydroxylation inhibit recombinant human (rh)ACE2 activity. rhACE2 activity was assessed with the fluorogenic substrate Mca-APK(Dnp). Polyphenols reduced rhACE2 activity by 15–66% at 10 μM. Rutin, quercetin-3-O-glucoside, tamarixetin, and 3,4-dihydroxyphenylacetic acid inhibited rhACE2 activity by 42–48%. Quercetin was the most potent rhACE2 inhibitor among the polyphenols tested, with an IC50 of 4.48 μM. Thus, quercetin, its metabolites, and polyphenols with 3′,4′-hydroxylation inhibited rhACE2 activity at physiologically relevant concentrations in vitro. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.0c05064 |