A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients

Purpose In recurrent prostate carcinoma, determination of the site of recurrence is crucial to guide personalized therapy. In contrast to prostate-specific membrane antigen (PSMA)–positron emission tomography (PET) imaging, computed tomography (CT) has only limited capacity to detect lymph node meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2020-12, Vol.47 (13), p.2968-2977
Hauptverfasser: Peeken, Jan C., Shouman, Mohamed A., Kroenke, Markus, Rauscher, Isabel, Maurer, Tobias, Gschwend, Jürgen E., Eiber, Matthias, Combs, Stephanie E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose In recurrent prostate carcinoma, determination of the site of recurrence is crucial to guide personalized therapy. In contrast to prostate-specific membrane antigen (PSMA)–positron emission tomography (PET) imaging, computed tomography (CT) has only limited capacity to detect lymph node metastases (LNM). We sought to develop a CT-based radiomic model to predict LNM status using a PSMA radioguided surgery (RGS) cohort with histological confirmation of all suspected lymph nodes (LNs). Methods Eighty patients that received RGS for resection of PSMA PET/CT-positive LNMs were analyzed. Forty-seven patients (87 LNs) that received inhouse imaging were used as training cohort. Thirty-three patients (62 LNs) that received external imaging were used as testing cohort. As gold standard, histological confirmation was available for all LNs. After preprocessing, 156 radiomic features analyzing texture, shape, intensity, and local binary patterns (LBP) were extracted. The least absolute shrinkage and selection operator (radiomic models) and logistic regression (conventional parameters) were used for modeling. Results Texture and shape features were largely correlated to LN volume. A combined radiomic model achieved the best predictive performance with a testing-AUC of 0.95. LBP features showed the highest contribution to model performance. This model significantly outperformed all conventional CT parameters including LN short diameter (AUC 0.84), LN volume (AUC 0.80), and an expert rating (AUC 0.67). In lymph node–specific decision curve analysis, there was a clinical net benefit above LN short diameter. Conclusion The best radiomic model outperformed conventional measures for detection of LNM demonstrating an incremental value of radiomic features.
ISSN:1619-7070
1619-7089
DOI:10.1007/s00259-020-04864-1