Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and are a major contributor to neutralizing antibody responses elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2021-01, Vol.29 (1), p.44-57.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and are a major contributor to neutralizing antibody responses elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies. They further enable the design of escape-resistant antibody cocktails—including cocktails of antibodies that compete for binding to the same RBD surface but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.
[Display omitted]
•Develop system to map all SARS-CoV-2 RBD mutations that escape antibody binding•Escape maps predict which mutations emerge when virus grown in presence of antibody•Escape maps inform surveillance for possible antigenic evolution
Greaney et al. develop a method to map all mutations to the SARS-CoV-2 RBD that escape antibody binding and apply this method to 10 antibodies. The resulting escape maps predict which mutations arise when virus is grown in the presence of antibody and can inform the design of antibody therapeutics. |
---|---|
ISSN: | 1931-3128 1934-6069 1934-6069 |
DOI: | 10.1016/j.chom.2020.11.007 |