Design of an amphiphilic hyperbranched core/shell-type polymeric nanocarrier platform for drug delivery
An amphiphilic core/shell-type polymer-based drug carrier system (HPAE- PCL-b -MPEG), composed of hyperbranched poly(aminoester)-based polymer (HPAE) as the core building block and poly(ethylene glycol)-b - poly(ε-caprolactone) diblock polymers (MPEG-b -PCL) as the shell building block, was designed...
Gespeichert in:
Veröffentlicht in: | Turkish journal of chemistry 2020-01, Vol.44 (2), p.518-534 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An amphiphilic core/shell-type polymer-based drug carrier system (HPAE- PCL-b -MPEG), composed of hyperbranched poly(aminoester)-based polymer (HPAE) as the core building block and poly(ethylene glycol)-b - poly(ε-caprolactone) diblock polymers (MPEG-b -PCL) as the shell building block, was designed. The synthesized polymers were characterized with FTIR, 1 H NMR, 13 C NMR, and GPC analysis. Monodisperse HPAE-PCL-b - MPEG nanoparticles with dimensions of < 200 nm and polydispersity index of < 0.5 were prepared by nanoprecipitation method and characterized with SEM, particle size, and zeta potential analysis. 5-Fluorouracil was encapsulated within HPAE-PCL-b -MPEG nanoparticles. In vitro drug release profiles and cytotoxicity of blank and 5-fluorouracil-loaded nanoparticles were examined against the human colon cancer HCT116 cell line. All results suggest that HPAE-PCL-b - MPEG nanoparticles offer an alternative and effective drug nanocarrier system for drug delivery applications. |
---|---|
ISSN: | 1300-0527 1303-6130 1303-6130 |
DOI: | 10.3906/kim-1910-35 |