Meso-scale modeling and damage analysis of carbon/epoxy woven fabric composite under in-plane tension and compression loadings
•Efficient RVE generation method for woven composite with consistent mesh and realistic geometry•Elasto-plastic-damage model with tension-compression asymmetry for yarn material•Significant different behaviors including stress-strain curve and Poisson's ratio in tension and compression.•Differe...
Gespeichert in:
Veröffentlicht in: | International journal of mechanical sciences 2021-01, Vol.190 (C), p.105980, Article 105980 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Efficient RVE generation method for woven composite with consistent mesh and realistic geometry•Elasto-plastic-damage model with tension-compression asymmetry for yarn material•Significant different behaviors including stress-strain curve and Poisson's ratio in tension and compression.•Different damage evolutions affect the yarn deformation and thus the mechanical behaviors.
The mechanical properties and damage behaviors of carbon/epoxy woven fabric composite under in-plane tension and compression are studied at the meso-scale level through experiment and simulation. An efficient representative volume element (RVE) modeling method with consistent mesh, high yarn volume fraction and realistic geometry is proposed. The material constitutive laws with plasticity, tension-compression asymmetry and damage evolution are established for the three components - yarn, matrix and interface, respectively. Significantly different mechanical properties and damage evolutions are observed depending on loading conditions and initial geometry characteristics. It shows a non-linear stress-strain curve with clear transition region and intensive damage in tension, while a quasi-linear behavior up to facture is observed in compression with little damage prior to final fracture. Moreover, compared to the constant Poisson's ratio with straining in compression, a dramatic increase in Poisson's ratio appears in tension. Simulation shows damage mechanisms including transverse damage, matrix damage and delamination, which all play critical roles in the property evolution. In particular, the rapid damage accumulation after elastic deformation destroys the strong bonds and causes the easy deformation of transverse yarns which results in the transition region and large Poisson's ratio in tension. All the mechanical behaviors and damage evolutions are well captured and explained with the current RVE model.
[Display omitted] |
---|---|
ISSN: | 0020-7403 1879-2162 |
DOI: | 10.1016/j.ijmecsci.2020.105980 |