Complexation with Random Methyl-β-Cyclodextrin and (2-Hydroxypropyl)-β-Cyclodextrin Promotes Chrysin Effect and Potential for Liver Fibrosis Therapy

Liver fibrosis results from chronic liver injury and is characterized by the accumulation of extracellular matrix in excess driven by hepatic stellate cells (HSCs) activation. Chrysin (CHR) is a natural flavonoid that is limited by its low solubility to exert its anti-inflammatory, antioxidant and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-11, Vol.13 (21), p.5003
Hauptverfasser: Ignat, Simona-Rebeca, Dinescu, Sorina, Váradi, Judit, Fenyvesi, Ferenc, Nguyen, Thi Le Phuong, Ciceu, Alina, Hermenean, Anca, Costache, Marieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver fibrosis results from chronic liver injury and is characterized by the accumulation of extracellular matrix in excess driven by hepatic stellate cells (HSCs) activation. Chrysin (CHR) is a natural flavonoid that is limited by its low solubility to exert its anti-inflammatory, antioxidant and anti-fibrotic properties. The aim of this study was to investigate the biocompatibility of CHR complexes with two cyclodextrins (CDs)-(2-hydroxypropyl)-β-cyclodextrin (HPBCD) and random methyl-β-cyclodextrin (RAMEB), and their potential to induce anti-inflammatory, antioxidant and anti-fibrotic effects. Biocompatibility of the complexes was evaluated on Huh7 and LX2 cell lines: MTT and Live/Dead tests indicated the cell viability and an LDH test showed the cytotoxicity. Immunohistochemical staining of Nuclear Factor Kappa B (NF-κB) nuclear translocation was performed to evaluate the anti-inflammatory effect of the complexes. Oxygen Radical Absorbance assay, Superoxide Dismutase activity and Glutathione Peroxidase (GPx) assays indicated the antioxidant properties of the chrysin complexes. Finally, the complexes’ anti-fibrotic potential was evaluated at the protein and gene level of α-sma. In HSCs, CDs induced higher cytotoxicity correlated with lower cell viability than CHR–CD. The 1:1 CHR–RAMEB pretreatment avoided p65 translocation. The 1:2 CHR–RAMEB complex increased ORAC values, improved SOD activity and produced the highest stimulation of GPx activity. CHR–RAMEB reduced α-sma expression at lower concentration than CHR–HPBCD, proving to be more efficient. In conclusion, both CHR–CD complexes proved to be biocompatible, but CHR–RAMEB showed improved anti-inflammatory, antioxidant and anti-fibrotic effects that could recommend its further use in liver fibrosis treatment.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13215003