Physical Characterization of Sintered NiMnGa Ferromagnetic Shape Memory Alloy

The present work focused on the microstructural, thermal, electrical, and damping characterization of NiMnGa samples produced through a powder pressing and a sintering process; the effect of sintering times and of the starting powder size were evaluated. Moreover, an observation of the evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-10, Vol.13 (21), p.4806
Hauptverfasser: Villa, Francesca, Nespoli, Adelaide, Fanciulli, Carlo, Passaretti, Francesca, Villa, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work focused on the microstructural, thermal, electrical, and damping characterization of NiMnGa samples produced through a powder pressing and a sintering process; the effect of sintering times and of the starting powder size were evaluated. Moreover, an observation of the evolution of martensitic transformation typical of NiMnGa ferromagnetic shape memory alloy was conducted in comparison with the cast material behavior and in correlation with the material densification. The optimum powder size and sintering time for the process, i.e., 50 µm or lower and 72 h, were identified considering the investigated physical properties of the sintered samples in comparison to the cast material. The corresponding sample showed the best compromise between density, thermal and electrical properties, and damping and functional behaviour. In general, the outcomes of this study could be the basis of a useful tool for production processes that include a sintering step as well as being a starting point for the evaluation of an alternative low cost fabrication method of this alloy.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13214806